【分布式锁】05-使用Redisson中Semaphore和CountDownLatch原理
前言
前面已经写了Redisson大多的内容,我们再看看Redisson官网共有哪些组件:
image.png
剩下还有Semaphore和CountDownLatch两块,我们就趁热打铁,赶紧看看Redisson是如何实现的吧。
我们在JDK中都知道Semaphore和CountDownLatch两兄弟,这里就不多赘述,不了解的可以再回头看看。
Semaphore使用示例
先看下Semaphore原理图如下:
image.png
接着我们看下Redisson中使用的案例:
RSemaphore semaphore = redisson.getSemaphore("semaphore");
// 同时最多允许3个线程获取锁
semaphore.trySetPermits(3);
for(int i = 0; i < 10; i++) {
new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println(new Date() + ":线程[" + Thread.currentThread().getName() + "]尝试获取Semaphore锁");
semaphore.acquire();
System.out.println(new Date() + ":线程[" + Thread.currentThread().getName() + "]成功获取到了Semaphore锁,开始工作");
Thread.sleep(3000);
semaphore.release();
System.out.println(new Date() + ":线程[" + Thread.currentThread().getName() + "]释放Semaphore锁");
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();
}
Semaphore源码解析
接着我们根据上面的示例,看看源码是如何实现的:
第一步:
semaphore.trySetPermits(3);
public class RedissonSemaphore extends RedissonExpirable implements RSemaphore {
@Override
public boolean trySetPermits(int permits) {
return get(trySetPermitsAsync(permits));
}
@Override
public RFuture<Boolean> trySetPermitsAsync(int permits) {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"local value = redis.call('get', KEYS[1]); " +
"if (value == false or value == 0) then "
+ "redis.call('set', KEYS[1], ARGV[1]); "
+ "redis.call('publish', KEYS[2], ARGV[1]); "
+ "return 1;"
+ "end;"
+ "return 0;",
Arrays.<Object>asList(getName(), getChannelName()), permits);
}
}
执行流程为:
- get semaphore,获取到一个当前的值
- 第一次数据为0, 然后使用set semaphore 3,将这个信号量同时能够允许获取锁的客户端的数量设置为3
- 然后发布一些消息,返回1
接着看看semaphore.acquire();和semaphore.release(); 逻辑:
public class RedissonSemaphore extends RedissonExpirable implements RSemaphore {
@Override
public RFuture<Boolean> tryAcquireAsync(int permits) {
if (permits < 0) {
throw new IllegalArgumentException("Permits amount can't be negative");
}
if (permits == 0) {
return RedissonPromise.newSucceededFuture(true);
}
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"local value = redis.call('get', KEYS[1]); " +
"if (value ~= false and tonumber(value) >= tonumber(ARGV[1])) then " +
"local val = redis.call('decrby', KEYS[1], ARGV[1]); " +
"return 1; " +
"end; " +
"return 0;",
Collections.<Object>singletonList(getName()), permits);
}
@Override
public RFuture<Void> releaseAsync(int permits) {
if (permits < 0) {
throw new IllegalArgumentException("Permits amount can't be negative");
}
if (permits == 0) {
return RedissonPromise.newSucceededFuture(null);
}
return commandExecutor.evalWriteAsync(getName(), StringCodec.INSTANCE, RedisCommands.EVAL_VOID,
"local value = redis.call('incrby', KEYS[1], ARGV[1]); " +
"redis.call('publish', KEYS[2], value); ",
Arrays.<Object>asList(getName(), getChannelName()), permits);
}
}
先看看加锁的逻辑tryAcquireAsync():
- get semaphore,获取到一个当前的值,比如说是3,3 > 1
- decrby semaphore 1,将信号量允许获取锁的客户端的数量递减1,变成2
- decrby semaphore 1
- decrby semaphore 1
- 执行3次加锁后,semaphore值为0
此时如果再来进行加锁则直接返回0,然后进入死循环去获取锁,如下图:
image.png
接着看看解锁逻辑releaseAsync() :
- incrby semaphore 1,每次一个客户端释放掉这个锁的话,就会将信号量的值累加1,信号量的值就不是0了
看到这里大家就明白了了,Redisson实现Semaphore其实是很简单了
CountDownLatch使用示例
使用案例:
RCountDownLatch latch = redisson.getCountDownLatch("anyCountDownLatch");
latch.trySetCount(3);
System.out.println(new Date() + ":线程[" + Thread.currentThread().getName() + "]设置了必须有3个线程执行countDown,进入等待中。。。");
for(int i = 0; i < 3; i++) {
new Thread(new Runnable() {
@Override
public void run() {
try {
System.out.println(new Date() + ":线程[" + Thread.currentThread().getName() + "]在做一些操作,请耐心等待。。。。。。");
Thread.sleep(3000);
RCountDownLatch localLatch = redisson.getCountDownLatch("anyCountDownLatch");
localLatch.countDown();
System.out.println(new Date() + ":线程[" + Thread.currentThread().getName() + "]执行countDown操作");
} catch (Exception e) {
e.printStackTrace();
}
}
}).start();
}
latch.await();
System.out.println(new Date() + ":线程[" + Thread.currentThread().getName() + "]收到通知,有3个线程都执行了countDown操作,可以继续往下走");
CountDownLatch 源码解析
源码如下:
public class RedissonCountDownLatch extends RedissonObject implements RCountDownLatch {
@Override
public RFuture<Boolean> trySetCountAsync(long count) {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"if redis.call('exists', KEYS[1]) == 0 then "
+ "redis.call('set', KEYS[1], ARGV[2]); "
+ "redis.call('publish', KEYS[2], ARGV[1]); "
+ "return 1 "
+ "else "
+ "return 0 "
+ "end",
Arrays.<Object>asList(getName(), getChannelName()), newCountMessage, count);
}
@Override
public RFuture<Void> countDownAsync() {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, RedisCommands.EVAL_BOOLEAN,
"local v = redis.call('decr', KEYS[1]);" +
"if v <= 0 then redis.call('del', KEYS[1]) end;" +
"if v == 0 then redis.call('publish', KEYS[2], ARGV[1]) end;",
Arrays.<Object>asList(getName(), getChannelName()), zeroCountMessage);
}
}
先分析trySetCount()方法逻辑:
- exists anyCountDownLatch,第一次肯定是不存在的
- set redisson_countdownlatch__channel__anyCountDownLatch 3
- 返回1
接着分析latch.await();方法,如下图:
image.png
这个方法其实就是陷入一个while true死循环,不断的get anyCountDownLatch的值,如果这个值还是大于0那么就继续死循环,否则的话呢,就退出这个死循环
最后分析localLatch.countDown();方法:
- decr anyCountDownLatch,就是每次一个客户端执行countDown操作,其实就是将这个cocuntDownLatch的值递减1
await()方面已经分析过,死循环去判断anyCountDownLatch对应存储的值是否为0,如果为0则接着执行自己的逻辑
总结
看到了这里 这两个组件是不是很简单?
到了这里,Redisson部分的学习都已经结束了,后面还会学习ZK实现分布式锁的原理。
申明
本文章首发自本人博客:https://www.cnblogs.com/wang-meng 和公众号:壹枝花算不算浪漫,如若转载请标明来源!
感兴趣的小伙伴可关注个人公众号:壹枝花算不算浪漫

【分布式锁】05-使用Redisson中Semaphore和CountDownLatch原理的更多相关文章
- Redisson 分布式锁源码 11:Semaphore 和 CountDownLatch
前言 Redisson 除了提供了分布式锁之外,还额外提供了同步组件,Semaphore 和 CountDownLatch. Semaphore 意思就是在分布式场景下,只有 3 个凭证,也就意味着同 ...
- [转帖]分布式锁-redLock And Redisson
分布式锁-redLock And Redisson 2019-03-01 16:51:48 淹不死的水 阅读数 372更多 分类专栏: 分布式锁 版权声明:本文为博主原创文章,遵循CC 4.0 B ...
- Springboot分别使用乐观锁和分布式锁(基于redisson)完成高并发防超卖
原文 :https://blog.csdn.net/tianyaleixiaowu/article/details/90036180 乐观锁 乐观锁就是在修改时,带上version版本号.这样如果试图 ...
- 来吧,展示!Redis的分布式锁及其实现Redisson的全过程
前言 分布式锁是控制分布式系统之间同步访问共享资源的一种方式. 在分布式系统中,常常需要协调他们的动作.如果不同的系统或是同一个系统的不同主机之间共享了一个或一组资源,那么访问这些资源的时候,往往需要 ...
- 基于redis的分布式锁实现方案--redisson
实例代码地址,请前往:https://gitee.com/GuoqingLee/distributed-seckill redis官方文档地址,请前往:http://www.redis.cn/topi ...
- Java并发包中Semaphore的工作原理、源码分析及使用示例
1. 信号量Semaphore的介绍 我们以一个停车场运作为例来说明信号量的作用.假设停车场只有三个车位,一开始三个车位都是空的.这时如果同时来了三辆车,看门人允许其中它们进入进入,然后放下车拦.以后 ...
- 【分布式锁】07-Zookeeper实现分布式锁:Semaphore、读写锁实现原理
前言 前面已经讲解了Zookeeper可重入锁的实现原理,自己对分布式锁也有了更深的认知. 我在公众号中发了一个疑问,相比于Redis来说,Zookeeper的实现方式要更好一些,即便Redis作者实 ...
- ZooKeeper 分布式锁 Curator 源码 01:可重入锁
前言 一般工作中常用的分布式锁,就是基于 Redis 和 ZooKeeper,前面已经介绍完了 Redisson 锁相关的源码,下面一起看看基于 ZooKeeper 的锁.也就是 Curator 这个 ...
- ZooKeeper 分布式锁 Curator 源码 02:可重入锁重复加锁和锁释放
ZooKeeper 分布式锁 Curator 源码 02:可重入锁重复加锁和锁释放 前言 加锁逻辑已经介绍完毕,那当一个线程重复加锁是如何处理的呢? 锁重入 在上一小节中,可以看到加锁的过程,再回头看 ...
随机推荐
- Kafka与RabbitMQ、ActiveMQ协议区别
对于Kafka与RabbitMQ.ActiveMQ协议,它们具体的区别如下: activemq: activemq支持主从复制.集群.但是集群功能看起来很弱,只有failover功能,即 ...
- idea如何打包项目(java)
1.右击项目打开open module settings 2.依次打开 3.选择你的程序主入口 JAR files from libraies ①和设置库中的jar文件选择第一个打包时会把依赖库(li ...
- 改变生活的移动计算——感受 MobiSys 2015
MobiSys 2015" title="改变生活的移动计算--感受 MobiSys 2015"> 作者:微软亚洲研究院研究员 张健松 今年的MobiSys会议地点 ...
- 表单验证之JQuery Validate控件
概述 jQuery Validation Plugin v1.14.0,基于JQuery,官网http://jqueryvalidation.org/ 该插件捆绑了一套有用的验证方法,包括 URL 和 ...
- C++走向远洋——54(项目一2、分数类的重载、取倒数)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- 1、【Spark】Spark安装
本文基于的环境 Red Hat Linux Enterprise 7 x86_64 jdk 1.7.0_79 Python 2.7Spart spark-1.5.2-bin-hadoop2.6 官方要 ...
- Spring-Boot-应用可视化监控
图文简介 快速开始 1.Spring Boot 应用暴露监控指标[版本 1.5.7.RELEASE] 首先,添加依赖如下依赖: <dependency> <groupId>or ...
- Angular 1 深度解析:脏数据检查与 angular 性能优化
TL;DR 脏检查是一种模型到视图的数据映射机制,由 $apply 或 $digest 触发. 脏检查的范围是整个页面,不受区域或组件划分影响 使用尽量简单的绑定表达式提升脏检查执行速度 尽量减少页面 ...
- 【猫狗数据集】谷歌colab之使用pytorch读取自己数据集(猫狗数据集)
之前在:https://www.cnblogs.com/xiximayou/p/12398285.html创建好了数据集,将它上传到谷歌colab 在colab上的目录如下: 在utils中的rdat ...
- day05基本运算符,格式化输出,垃圾回收机制
内容大纲:1.垃圾回收机制详解(了解) 引用计数 标记清除 分代回收 2.与用户交互 接收用户输入 # python3中 input # python2.7(了解) input raw_input 格 ...