[目标检测]SSD原理
1 SSD基础原理
1.1 SSD网络结构


SSD使用VGG-16-Atrous作为基础网络,其中黄色部分为在VGG-16基础网络上填加的特征提取层。SSD与yolo不同之处是除了在最终特征图上做目标检测之外,还在之前选取的5个特特征图上进行预测。
SSD图1为SSD网络进行一次预测的示意图,可以看出,检测过程不仅在填加特征图(conv8_2, conv9_2, conv_10_2, pool_11)上进行,为了保证网络对小目标有很好检测效果,检测过程也在基础网络特征图(conv4_3, conv_7)上进行。
1.2 SSD网络的损失函数

注意:图中fc6, fc7名为fc,其实是卷积层。
SSD图2为整个SSD训练网络的结构,由于图像所含层数太多,网络中不能看到每层细节,我重画其中部分层为绿色,作为代表。可以看出,GT标签在分特征图上生成priorbox,即再将所有priobox组合为mbox_priorbox作为所有默认框的真实值。再看预测过程,会在所选取的特征图进行两个 3x3卷积,其中一个输出每个默认框的位置(x, y, w, h)四个值,另一个卷积层输出每个默认框检测到不同类别物体的概率,输出个数为预测类别个数。再将所有的默认框位置整合为mbox_loc,将所有默认框预测类别的向量组合为mbox_conf。mbox_loc、mbox_conf为所有预测默认框,将它与所有默认框的真实值mbox_priorbox进行计算损失,得到mbox_loss。
图中data下方每个priorbox都对应了min_size与max_size,表示不同特征图上的默认框在原图上的最小与最大感受野。关于不同特征图上的min_size与max_size,论文中给出的计算公式,可惜与实现的prototxt中的参数并不对应。
SSD的损失函数如图3所示,由每个默认框的定位损失与分类损失构成。

1.3 SSD网络训练技巧

1.3.1 数据增强
SSD训练过程中使用的数据增强对网络性能影响很大,大约有6.7%的mAP提升。
(1) 随机剪裁:采样一个片段,使剪裁部分与目标重叠分别为0.1, 0.3, 0.5, 0.7, 0.9,剪裁完resize到固定尺寸。
(2) 以0.5的概率随机水平翻转。
1.3.2 是否在基础网络部分的conv4_3进行检测
基础网络部分特征图分辨率高,原图中信息更完整,感受野较小,可以用来检测图像中的小目标,这也是SSD相对于YOLO检测小目标的优势所在。增加对基础网络conv4_3的特征图的检测可以使mAP提升4%。
1.3.3 使用瘦高与宽扁默认框
数据集中目标的开关往往各式各样,因此挑选合适形状的默认框能够提高检测效果。作者实验得出使用瘦高与宽扁默认框相对于只使用正方形默认框有2.9%mAP提升。
1.3.4 使用atrous卷积
通常卷积过程中为了使特征图尺寸特征图尺寸保持不变,通过会在边缘打padding,但人为加入的padding值会引入噪声,因此,使用atrous卷积能够在保持感受野不变的条件下,减少padding噪声,关于atrous参考。本文SSD训练过程中并且没有使用atrous卷积,但预训练过程使用的模型为VGG-16-atrous,意味着作者给的预训练模型是使用atrous卷积训练出来的。使用atrous版本VGG-16作为预训模型比较普通VGG-16要提高0.7%mAP。
1.4 实验结论
作者发现SSD对小目标检测效果不好(但也比YOLO要好,因此多特征图检测),这是因为小物体在高层特征图上保留很少的信息,通过增加输入图像的尺寸能够解决对小物体检测效果。

1.5 参考
[目标检测]SSD原理的更多相关文章
- 深度学习与CV教程(13) | 目标检测 (SSD,YOLO系列)
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-det ...
- 目标检测--SSD: Single Shot MultiBox Detector(2015)
SSD: Single Shot MultiBox Detector 作者: Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, ...
- [目标检测]YOLO原理
1 YOLO 创新点: 端到端训练及推断 + 改革区域建议框式目标检测框架 + 实时目标检测 1.1 创新点 (1) 改革了区域建议框式检测框架: RCNN系列均需要生成建议框,在建议框上进行分类与回 ...
- 目标检测-ssd
intro: ECCV 2016 Oral arxiv: http://arxiv.org/abs/1512.02325 paper: http://www.cs.unc.edu/~wliu/pape ...
- 深度学习笔记之使用Faster-Rcnn进行目标检测 (原理篇)
不多说,直接上干货! Object Detection发展介绍 Faster rcnn是用来解决计算机视觉(CV)领域中Object Detection的问题的.经典的解决方案是使用: SS(sele ...
- [目标检测]PVAnet原理
创新点:基于Faster-RCNN使用更高效的基础网络 1.1 创新点 PVAnet是RCNN系列目标方向,基于Faster-RCNN进行改进,Faster-RCNN基础网络可以使用ZF.VGG.Re ...
- 目标检测-SSD算法从零实现
1. 几个工具函数 def box_corner_to_center(boxes): """从(左上,右下)转换到(中间,宽度,高度)""" ...
- 如何使用 pytorch 实现 SSD 目标检测算法
前言 SSD 的全称是 Single Shot MultiBox Detector,它和 YOLO 一样,是 One-Stage 目标检测算法中的一种.由于是单阶段的算法,不需要产生所谓的候选区域,所 ...
- 【目标检测】YOLO:
PPT 可以说是讲得相当之清楚了... deepsystems.io 中文翻译: https://zhuanlan.zhihu.com/p/24916786 图解YOLO YOLO核心思想:从R-CN ...
随机推荐
- 从零开始学Sketch——进阶篇
本文转自 http://www.jianshu.com/p/ff70b5f35c8f 从零开始学Sketch——进阶篇 Sketch是一款矢量绘图应用,而矢量绘图无疑是目前进行网页.图标以及界面设计的 ...
- HttpClient详细解释
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且 ...
- Material Design系列第八篇——Creating Lists and Cards
Creating Lists and Cards //创建列表和卡片 To create complex lists and cards with material design styles in ...
- 【数据库系列】MySql中的select的锁表范围
由于InnoDB预设的是Row-Level Lock,只有明确指定主键的时候MySql才会执行Row lock,否则MySql将会执行Table Lock. 1.明确指定主键则是行锁 2.明确指定主键 ...
- 【大数据系列】HDFS文件权限和安全模式、安装
HDFS文件权限 1.与linux文件权限类型 r:read w:write x:execute权限x对于文件忽略,对于文件夹表示是否允许访问其内容 2.如果linux系统用户sanglp使用hado ...
- 【linux系列】配置免密登陆
一.SSH无密码登录原理 此操作是为了搭建hadoop集群进行的操作 Master(NameNode|JobTracker)作为客户端,要实现无密码公钥认证,连接到服务器Salve(DataNode| ...
- vue钩子生命周期
1.beforeCreate // 组件实例刚刚被创建2.created // 实例已经创建完成3.beforeMount // 模板编译之 ...
- netstat命令的安装
yum -y install net-tools (可以生成ifconfig命令,netstat命令)
- 检查mono兼容性的工具MOAM
mono的迁移工具,可以帮助我们从windows平台迁移到Linux平台,可以用来检测特定的.net的dll或exe程序对mono的兼容性,并能够给出不兼容的方法 项目地址 MoMA 项目介绍 MoM ...
- [工具]Sublime 显示韩文