bzoj2154: Crash的数字表格 莫比乌斯反演
题意:求\(\sum_{i=1}^n \sum_{j=1}^m\frac{i*j}{gcd(i,j)}\)
题解:\(ans=\sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{gcd(i,j)}\)
\(=\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}i*j[gcd(i,j)==1]\)
\(=\sum_{d=1}^{min(n,m)}d\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d} \rfloor}i*j \sum_{x|gcd(i,j)}\mu(x)\)
\(=\sum_{d=1}^{min(n,m)}d\sum_{x=1}^{min(\lfloor \frac{n}{d} \rfloor,\lfloor \frac{m}{d} \rfloor)}x^2\mu(x)\sum_{i=1}^{\lfloor \frac{n}{d*x} \rfloor}\sum_{j=1}^{\lfloor \frac{m}{d*x} \rfloor}i*j\)
最后里层和外层都能整除分块,sum可以处理成\(mu*i^2\)的前缀和,
取模太多会T
/**************************************************************
Problem: 2154
User: walfy
Language: C++
Result: Accepted
Time:18528 ms
Memory:167308 kb
****************************************************************/
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 20101009
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
//#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=10000000+10,maxn=400000+10,inf=0x3f3f3f3f;
int prime[N],cnt,mu[N];
ll sum[N];
bool mark[N];
void init()
{
mu[1]=1;
for(int i=2;i<N;i++)
{
if(!mark[i])prime[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&prime[j]*i<N;j++)
{
mark[prime[j]*i]=1;
mu[prime[j]*i]=-mu[i];
if(i%prime[j]==0){mu[prime[j]*i]=0;break;}
}
}
for(ll i=1;i<N;i++)
{
sum[i]=sum[i-1]+i*i%mod*mu[i];
add(sum[i],mod);
}
}
ll F(ll n,ll m)
{
if(n>m)swap(n,m);
ll ans=0;
for(ll i=1,j;i<=n;i=j+1)
{
j=Min(n/(n/i),m/(m/i));
ll t1=n/i,t2=m/i;
t1=t1*(t1+1)/2;t2=t2*(t2+1)/2;
t1%=mod,t2%=mod;
ll te=(sum[j]-sum[i-1]);add(te,mod);
add(ans,te*t1%mod*t2%mod);
}
return ans;
}
int main()
{
init();
ll n,m;scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
ll ans=0;
for(ll i=1,j;i<=n;i=j+1)
{
j=Min(n/(n/i),m/(m/i));
add(ans,((j+i)*(j-i+1)/2)%mod*F(n/i,m/i)%mod);
}
printf("%lld\n",ans);
return 0;
}
/********************
********************/
bzoj2154: Crash的数字表格 莫比乌斯反演的更多相关文章
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- 【bzoj2154】Crash的数字表格 莫比乌斯反演
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, ...
- 【BZOJ】2154: Crash的数字表格 莫比乌斯反演
[题意]给定n,m,求Σlcm(i,j),1<=i<=n,1<=j<=m,n,m<=10^7. [算法]数论(莫比乌斯反演) [题解] $$ans=\sum_{i\leq ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- [bzoj2154]Crash的数字表格(mobius反演)
题意:$\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {lcm(i,j)} } $ 解题关键: $\sum\limits_{i = 1}^n {\sum\l ...
- 洛谷 - P1829 - Crash的数字表格 - 莫比乌斯反演
求: \(S(n,m)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 显然: \(S(n,m)=\sum\limits_{i=1}^{n}\ ...
随机推荐
- 小黄人IP营销的四种玩法思维导图
小黄人IP营销的四种玩法思维导图 ------------------------------ 本人微信公众帐号: 心禅道(xinchandao) 本人微信公众帐号:双色球预测合买(ssqyuce)
- 基于GIT的管理
常用命令 git init : 初始化仓库git add 文件名 :把文件添加到暂存区git commit -m "操作记录" : 提交到仓库,设置相关操作的记录 git stat ...
- Mysql 更改编码方式
Mysql 更改编码方式 --查看编码方式 show variables like 'char%'; --设置编码方式 set character_set_server=utf8;
- Unix/Linux系统编程
一,开发工具 编译器 GCC 调试工具 GDB 代码编辑 Vim 1. 编译命令 gcc hello.c -o hello # 第二个hello为新生成的可执行文件名 -o 为生成的可执行文件指定名称 ...
- 04: 事件驱动、五种I/O操作、I/O多路复用select和epoll
网络编程其他篇 目录: 1.1 事件驱动 1.2 五种I/O操作 1.3 I/O 多路复用之select.poll.epoll详解 1.1 事件驱动返回顶部 1.什么是事件驱动 定义:就是根据不同事 ...
- POJ3436 ACM Computer Factory(最大流/Dinic)题解
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8944 Accepted: 3 ...
- Springboot2.x 集成redis
pom.xml 添加 <dependency> <groupId>org.springframework.boot</groupId> <artifactId ...
- dp入门 专题记录 2017-7-26
POJ3176-Cow Bowling 题目大意:现有n行数,以金字塔的形式排列,即第一行一个数字,第二行2个数字,依次类推,现在需要找一条从第一层到第n层的路线,使得该路线上的所有点的权值和最大 思 ...
- Unity 之 transform
transform.Translate 1.function Translate (translation : Vector3, relativeTo : Space = Space.Self) : ...
- ElasticSearch 5.4 自定义插件
ElasticSearch 做为数据仓库处理速度确实很强,但是很多和业务相关的函数ElasticSearch怎么支持的,通过查询发现,ElasticSearch支持自定义插件(相当于自定义函数),通过 ...