http://www.lydsy.com/JudgeOnline/problem.php?id=2467

题意:

思路:
要用矩阵树定理不难,但是这里的话需要取模,所以是需要计算逆元的,但是用辗转相减会更简单。

引用一大神博客里的介绍:http://blog.csdn.net/u013010295/article/details/47451451

值得一提的是,有些题目要求行列式模上一个数的结果。怎么求模意义下的行列式呢?这些题答案都比较大,用浮点数的话精度达不到要求,确实是一个问题。(显然强行用高精度分数类直接消元,最后再取模是可以的,但实现起来就复杂了)

我们注意到最后行列式是主对角线上的元素乘积再取模,根据同余定理,我们只需要对这些元素取模后的结果再相乘,就能得到相同的结果。因此我们可以采用在模意义下对矩阵消元的方法。然而消元过程中我们不可避免地要计算当前列的主元间的比值,这要用到除法;但另一方面,只有加法、减法、乘法操作才能保证同余,怎么在带有除法操作的条件下取模呢?

如果模的数是个质数(其实只需要模数和除数互质),对于除法我们可以直接变成乘上除数的逆元,根据费马小定理,这个逆元可以用快速幂简单求出来。如果模数不是质数,这就比较复杂了,我们在此介绍一种简单的方法。

我们知道,如果对于两个正数,不断地把较大的数减去较小的数,最后一定会有一个数为0。你可能已经知道,这就是辗转相减法的过程。同样地,我们对于矩阵中的两行,不断地把主元较大的那一行减去主元较小的那一行,最终一定有一行主元为0,也就是完成了消元(注意这里的减法是模意义下的减法)。而且这一过程是不改变行列式的。

(需要说明的是,一般情况下,矩阵中可能会有主元为负数的情况,这时我们简单的“大数减小数”显然是不行了。你可能会想到,要对正负数的各种情况判断一下,分别改为加法和减法操作。然而,这里我们讨论的是模意义下的矩阵消元,矩阵的元素都是正整数,并不存在这个问题。)

这样的减法效率还不够高,显然,如果两个主元相差太大,我们需要不断地用一行减去另一行。我们可以记录下两个主元相除的商x(这里用的是整数除法,当不能整除的时候向上向下取整都可以,由于计算机内部的整数除法实现,我们一般是向下取整,而且也符合我们取商的直觉,下面复杂度计算的是向下取整的做法),一次性用主元较大的行减去主元较小的行乘上x倍,这样效率就大大提高了。我们这样做的复杂度是多少呢?其实你也许已经发现,这一过程实际上就是辗转相除法,所以时间复杂度是O(log(n))的。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
#include<set>
using namespace std;
typedef long long ll;
typedef pair<int,ll> pll;
const int INF = 0x3f3f3f3f;
const int maxn=+; int n;
int C[maxn][maxn]; int Gauss()
{ for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
C[i][j]=(C[i][j]+)%; int ans=;
for(int i=;i<=n;i++) //当前行
{
for(int j=i+;j<=n;j++) //当前行之后的每一行
{
while(C[j][i]) //利用gcd的方法,不停地进行辗转相除
{
int tmp=C[i][i]/C[j][i];
for(int k=i;k<=n;k++) C[i][k]=(C[i][k]-tmp*C[j][k])%;
for(int k=i;k<=n;k++) swap(C[i][k],C[j][k]);
ans=-ans;
}
}
if(C[i][i]==) return ;
ans=(ans*C[i][i])%;
}
ans=(ans+)%;
return ans;
} int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
memset(C,,sizeof(C));
scanf("%d",&n); int cnt=n;
for(int i=;i<=n;i++)
{
C[i][i]+=;
C[i][i%n+]+=-;
C[i][(i-)>=?i-:n]+=-;
}
for(int i=;i<=n;i++)
{
cnt++;
C[i][cnt]=C[cnt][i]+=-;
C[cnt][cnt]+=;
C[cnt][cnt+]+=-;
C[cnt+][cnt]+=-; cnt++;
C[cnt][cnt]+=;
C[cnt][cnt+]+=-;
C[cnt+][cnt]+=-; cnt++;
C[cnt][cnt]+=;
C[cnt][i%n+]+=-;
C[(i+)<=n?i+:][cnt]+=-;
}
n=cnt-;
printf("%d\n",Gauss());
}
return ;
}

BZOJ 2467: [中山市选2010]生成树(矩阵树定理+取模高斯消元)的更多相关文章

  1. 【bzoj2467】[中山市选2010]生成树 矩阵树定理

    题目描述 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈 ...

  2. BZOJ 2467: [中山市选2010]生成树 [组合计数]

    2467: [中山市选2010]生成树 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 638  Solved: 453[Submit][Status][ ...

  3. BZOJ 2467: [中山市选2010]生成树

    有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成的圈.在中心的这个n边圈的每一条边同时也是某一个五角形的一条边,一共有n个不同的五角形.这些五角形只在五角形圈的中心的圈上有公共的 ...

  4. BZOJ 2467 [中山市选2010]生成树(组合数学)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2467 [题目大意] 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边 ...

  5. BZOJ_2467_[中山市选2010]生成树_数学

    BZOJ_2467_[中山市选2010]生成树_数学 [Submit][Status][Discuss] Description 有一种图形叫做五角形圈.一个五角形圈的中心有1个由n个顶点和n条边组成 ...

  6. bzoj 4031: 小Z的房间 矩阵树定理

    bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时 ...

  7. 2019.01.02 bzoj2467: [中山市选2010]生成树(矩阵树定理)

    传送门 矩阵树定理模板题. 题意简述:自己看题面吧太简单懒得写了 直接构建出这4n4n4n个点然后按照题面连边之后跑矩阵树即可. 代码: #include<bits/stdc++.h> # ...

  8. [bzoj2467][中山市选2010]生成树_快速幂

    生成树 bzoj-2467 中山市选2010 题目大意:题目链接 注释:略. 想法:首先,考虑生成树的性质.每两个点之间有且只有一条路径.我们将每个五边形的5条边分为外面的4条边和内部的一条边,在此简 ...

  9. bzoj 2468: [中山市选2010]三核苷酸

    2468: [中山市选2010]三核苷酸 Description 三核苷酸是组成DNA序列的基本片段.具体来说,核苷酸一共有4种,分别用’A’,’G’,’C’,’T’来表示.而三核苷酸就是由3个核苷酸 ...

随机推荐

  1. 迁移到 Linux :入门介绍 | Linux 中国

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/F8qG7f9YD02Pe/article/details/79001952 这个新文章系列将帮你从其 ...

  2. 12 jmeter性能测试实战--web程序

    项目背景 项目:XX网站环境:Windows需求:并发登录的性能测试场景:1s增加2个线程,运行2000次(线程数20,Ramp-Up seconds 10,循环次数100).分别看20.40.60并 ...

  3. postman 安装,对elasticsearch进行请求

    1  使用postman对elasticsearch进行测试 :下载插件: https://www.getpostman.com/apps ,下载时exe文件,双击自动安装,首次打开注册.下面就可以使 ...

  4. Word Add-in 函数调用顺序

    这个图表明的函数的调用顺序,主要代码如下: // MyAddin.cpp : Implementation of DLL Exports. // Note: Proxy/Stub Informatio ...

  5. [LeetCode] 836. Rectangle Overlap_Easy

    A rectangle is represented as a list [x1, y1, x2, y2], where (x1, y1) are the coordinates of its bot ...

  6. [LeetCode] 560. Subarray Sum Equals K_Medium

    Given an array of integers and an integer k, you need to find the total number of continuous subarra ...

  7. python -- 解决If using all scalar values, you must pass an index问题

    [问题描述] 在将dict转为DataFrame时会报错:If using all scalar values, you must pass an index 例如: summary = pd.Dat ...

  8. Js中split()方法的正确使用

    通过 js 获取 QueryString (location.search部分) 参数很常见,网上代码也满天飞.不过现在的框架,基本上都通过路由伪静态了,把以前的 QueryString 变成了pat ...

  9. VS2010/MFC编程入门之四十二(MFC常用类:CString类)

    上一节鸡啄米讲了分割窗口的有关知识,本节开始讲解MFC的一些常用类,先来说说CString类. CString类简介 CString类作为MFC的常用类,当之无愧.可以这样说,只要是从事MFC开发,基 ...

  10. 关于VS2010的帮助文档更改路径

    不小心把MSDN装在系统盘怎么办? 由于自己的C盘空间比较有限,所以经常需要把软件安装在其他磁盘,比如E盘,但是这次重装却不小心就装在C盘了,特遗憾,偶然在网上找到可以更改路径的方法,自己试试,成功了 ...