hdoj Max Sum Plus Plus(DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024
题意:----最大M子段和问题
给定由 n个整数(可能为负整数)组成的序列a1,a2,a3,……,an,以及一个正整数 m,要求确定序列 a1,a2,a3,……,an的 m个不相交子段,
使这m个子段的总和达到最大,求出最大和。
思路:DP
用a数组表用示数据,dp[i][j]表示将前j个数划分成i个子段的和的最大值(a[j]包含在最后一个段中)。
则有状态转移方程:dp[i][j]=max(dp[i][j-1]+a[j] , dp[i-1][t]+a[j]),其中i-1<=t<=j-1。即将a[j]合并到最后一个段还是独立组成一个段。
这样的时间复杂度为O(m*n^2),空间复杂度为O(m*n),均比较大。
优化:在计算dp [i][j]时会花费大量时间计算dp[i-1][t] (i-1<=t<=j-1),如果进一步用dp的思想将dp[i-1][t]的值在之前的计算中存储起来,那么时间复杂度将只有O(m*n),那么可以用f[j-1]表示dp[i-1][t] (i-1<=t<=j-1),于是发现f[n] 我们始终用不上。在计算dp[i][j] 时需要f[j-1](此时的f[j-1]是i-1层的),在计算dp[i][j]的过程可以得到f[j](i层的),但不能马上赋给f[j],因为此时的f[j]存储的将前j个数据划分成i-1段的最大值,在计算dp[i][j+1]时需要,所以可以暂时存储在f[n]中,在计算完
dp[i][j+1]后之后再赋给f[j]。这样就省去了每次循环时计算dp[i-1][t]的时间。
同时我们会发现dp数组可以不需要了,可以用tmp临时表示dp[i][j]。这样就不需要dp这个耗空间巨大的数组了。
AC代码:
#include<bits/stdc++.h>
using namespace std; const int maxn=1e6+;
int n,m;
int a[maxn],f[maxn]; int dp(){
int tmp;
for(int i=;i<=m;i++){
tmp=;
for(int j=;j<=i;j++)
tmp+=a[j];
f[n]=tmp;
for(int j=i+;j<=n;j++){
tmp=max(tmp,f[j-])+a[j];
f[j-]=f[n];
f[n]=max(f[j-],tmp);
}
}
return f[n];
} int main(){
while(scanf("%d%d",&m,&n)!=EOF){
for(int i=;i<=n;i++)
scanf("%d",&a[i]),f[i]=;
printf("%d\n",dp());
}
return ;
}
参考:https://www.cnblogs.com/dongsheng/archive/2013/05/28/3104629.html
hdoj Max Sum Plus Plus(DP)的更多相关文章
- HDU 1024 Max Sum Plus Plus(dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 题目大意:有多组输入,每组一行整数,开头两个数字m,n,接着有n个数字.要求在这n个数字上,m块 ...
- HDU 1024:Max Sum Plus Plus(DP)
http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Problem Description Now I think you ...
- HDU1024 Max Sum Plus Plus(dp)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 #include<iostream> #include<vector> #i ...
- HDU 1024 Max Sum Plus Plus (动态规划)
HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...
- HDU 1024 Max Sum Plus Plus(DP的简单优化)
Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...
- HDU 1024:Max Sum Plus Plus(DP,最大m子段和)
Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- Leetcode之动态规划(DP)专题-931. 下降路径最小和(Minimum Falling Path Sum)
Leetcode之动态规划(DP)专题-931. 下降路径最小和(Minimum Falling Path Sum) 给定一个方形整数数组 A,我们想要得到通过 A 的下降路径的最小和. 下降路径可以 ...
- Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings)
Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings) 给定两个字符串s1, s2,找到 ...
随机推荐
- 转转转!java继承中的this和super
学习java时看了不少尚学堂马士兵的视频,还是挺喜欢马士兵的讲课步骤的,二话不说,先做实例,看到的结果才是最实际的,理论神马的全是浮云.只有在实际操作过程中体会理论,在实际操作过程中升华理论才是最关键 ...
- tomcat 性能优化(内存优化 线程优化)
转自:http://blog.sina.com.cn/s/blog_4b5bc01101014s81.html tomcat 性能优化 linux修改TOMCAT_HOME/bin/catalina. ...
- 转载-MyBatis学习总结
MyBatis学习总结(八)——Mybatis3.x与Spring4.x整合 孤傲苍狼 2015-02-07 00:09 阅读:89825 评论:54 MyBatis学习总结(七)——Myba ...
- ssh的应用和vnc连接桌面
什么是ssh? SSH是一种网络协议,用于计算机之间的加密登录.如果一个用户从本地计算机,使用SSH协议登录另一台远程计算机,我们就可以认为,这种登录是安全的,即使被中途截获,密码也不会泄露.SSH之 ...
- 2天时间终于把ntopng装好了
1.环境centos6.7x642.安装步骤,首先把centos按优化步骤完成3.更改centos的yum源,更改为阿里云的源.4.[root@netmon ntopng]# cat /etc/yum ...
- BatchNormalization批量归一化
动机: 防止隐层分布多次改变,BN让每个隐层节点的激活输入分布缩小到-1和1之间. 好处: 缩小输入空间,从而降低调参难度:防止梯度爆炸/消失,从而加速网络收敛. BN计算公式: keras.laye ...
- Spark SQL 编程
Spark SQL的依赖 Spark SQL的入口:SQLContext 官方网站参考 https://spark.apache.org/docs/1.6.2/sql-programming-guid ...
- ubuntu16.04安装python3,numpy,pandas等量化计算库
ubunt安装python3 sudo add-apt-repository ppa:fkrull/deadsnakessudo apt-get updatesudo apt-get install ...
- UVA-550
题意 输入进制数n,第一个乘数的最后一位m,第二个乘数k,乘法的结果为mk, mk的第一位是m,求此时mk的长度 #include<iostream> #include <stdio ...
- 0_Simple__template
简单的 CUDA 应用模板,白送的 Sample. ▶ 源代码 //template_cpu.cpp extern "C" void computeGold(float *, co ...