题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024

题意:----最大M子段和问题
给定由 n个整数(可能为负整数)组成的序列a1,a2,a3,……,an,以及一个正整数 m,要求确定序列 a1,a2,a3,……,an的 m个不相交子段,
使这m个子段的总和达到最大,求出最大和。

思路:DP

用a数组表用示数据,dp[i][j]表示将前j个数划分成i个子段的和的最大值(a[j]包含在最后一个段中)。

则有状态转移方程:dp[i][j]=max(dp[i][j-1]+a[j] , dp[i-1][t]+a[j]),其中i-1<=t<=j-1。即将a[j]合并到最后一个段还是独立组成一个段。

这样的时间复杂度为O(m*n^2),空间复杂度为O(m*n),均比较大。

优化:在计算dp [i][j]时会花费大量时间计算dp[i-1][t] (i-1<=t<=j-1),如果进一步用dp的思想将dp[i-1][t]的值在之前的计算中存储起来,那么时间复杂度将只有O(m*n),那么可以用f[j-1]表示dp[i-1][t] (i-1<=t<=j-1),于是发现f[n] 我们始终用不上。在计算dp[i][j] 时需要f[j-1](此时的f[j-1]是i-1层的),在计算dp[i][j]的过程可以得到f[j](i层的),但不能马上赋给f[j],因为此时的f[j]存储的将前j个数据划分成i-1段的最大值,在计算dp[i][j+1]时需要,所以可以暂时存储在f[n]中,在计算完

dp[i][j+1]后之后再赋给f[j]。这样就省去了每次循环时计算dp[i-1][t]的时间。

同时我们会发现dp数组可以不需要了,可以用tmp临时表示dp[i][j]。这样就不需要dp这个耗空间巨大的数组了。

AC代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn=1e6+;
int n,m;
int a[maxn],f[maxn]; int dp(){
int tmp;
for(int i=;i<=m;i++){
tmp=;
for(int j=;j<=i;j++)
tmp+=a[j];
f[n]=tmp;
for(int j=i+;j<=n;j++){
tmp=max(tmp,f[j-])+a[j];
f[j-]=f[n];
f[n]=max(f[j-],tmp);
}
}
return f[n];
} int main(){
while(scanf("%d%d",&m,&n)!=EOF){
for(int i=;i<=n;i++)
scanf("%d",&a[i]),f[i]=;
printf("%d\n",dp());
}
return ;
}

参考:https://www.cnblogs.com/dongsheng/archive/2013/05/28/3104629.html

hdoj Max Sum Plus Plus(DP)的更多相关文章

  1. HDU 1024 Max Sum Plus Plus(dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 题目大意:有多组输入,每组一行整数,开头两个数字m,n,接着有n个数字.要求在这n个数字上,m块 ...

  2. HDU 1024:Max Sum Plus Plus(DP)

    http://acm.hdu.edu.cn/showproblem.php?pid=1024 Max Sum Plus Plus Problem Description Now I think you ...

  3. HDU1024 Max Sum Plus Plus(dp)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1024 #include<iostream> #include<vector> #i ...

  4. HDU 1024 Max Sum Plus Plus (动态规划)

    HDU 1024 Max Sum Plus Plus (动态规划) Description Now I think you have got an AC in Ignatius.L's "M ...

  5. HDU 1024 Max Sum Plus Plus(DP的简单优化)

    Problem Description Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To b ...

  6. HDU 1024:Max Sum Plus Plus(DP,最大m子段和)

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  7. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

  8. Leetcode之动态规划(DP)专题-931. 下降路径最小和(Minimum Falling Path Sum)

    Leetcode之动态规划(DP)专题-931. 下降路径最小和(Minimum Falling Path Sum) 给定一个方形整数数组 A,我们想要得到通过 A 的下降路径的最小和. 下降路径可以 ...

  9. Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings)

    Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings) 给定两个字符串s1, s2,找到 ...

随机推荐

  1. yum安装软件时报错:Loaded plugins:fastestnirror,security Existing lock /var/run/yum.pid

    在linux中使用yum时出现如下错误: Loaded plugins: fastestmirror, security Existing lock /var/run/yum.pid: another ...

  2. ASP.NET Web Pages:文件

    ylbtech-.Net-ASP.NET Web Pages:文件 1.返回顶部 1. ASP.NET Web Pages - 文件 本章介绍有关使用文本文件的知识. 使用文本文件 在前面的章节中,我 ...

  3. 【转载】如何在 Github 上发现优秀的开源项目?

    之前发过一系列有关 GitHub 的文章,有同学问了,GitHub 我大概了解了,Git 也差不多会使用了,但是还是搞不清 GitHub 如何帮助我的工作,怎么提升我的工作效率? 问到点子上了,Git ...

  4. 利用百度翻译API,获取翻译结果

    利用百度翻译API,获取翻译结果 translate.py #!/usr/bin/python #-*- coding:utf-8 -*- import sys reload(sys) sys.set ...

  5. js在table指定tr行上或底下添加tr行

    js在table指定tr行上或下面添加tr行 function onAddTR(trIndex)         {             var tb = document.getElementB ...

  6. pandas的to_csv函数

    分隔符 sep : Field delimiter for the output file (default ”,”) dt.to_csv('C:/Users/think/Desktop/Result ...

  7. Scrapy-下载中间件

    下载中间件 下载器中间件是介于Scrapy的request/response处理的钩子框架. 是用于全局修改Scrapy request和response的一个轻量.底层的系统 编写您自己的下载器中间 ...

  8. Spring bean注解配置(1)

    Spring自带的@Component注解及扩展@Repository.@Service.@Controller,如图 在使用注解方式配置bean时,需要引进一个包: 使用方法: 1.为需要使用注解方 ...

  9. 一点ExtJS开发的感悟

    虽然项目一直采用ExtJS作为前端开发,接触到了一些ExtJS 的一些场景界面,自己也尝试封装一些组件,对于开发70%基本可以满足需求.遇到最为麻烦的就是Ext的模版或者直接拼接字符串再进行eval转 ...

  10. 谷歌推出新型强化学习框架Dopamine

    今日,谷歌发布博客介绍其最新推出的强化学习新框架 Dopamine,该框架基于 TensorFlow,可提供灵活性.稳定性.复现性,以及快速的基准测试. GitHub repo:https://git ...