List

from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-lists?ex=2

-----------------1-------------------------------------

  • Create a list

As opposed to intbool etc., a list is a compound data type; you can group values together:

a = "is"
b = "nice"
my_list = ["my", "list", a, b]

--------------2----------------------------------------

  • Create list with different types

A list can contain any Python type. Although it's not really common, a list can also contain a mix of Python types including strings, floats, booleans, etc.

# area variables (in square meters)
hall = 11.25
kit = 18.0
liv = 20.0
bed = 10.75
bath = 9.50

# Adapt list areas
areas = ["hallway",hall, "kitchen",kit, "living room", liv, "bedroom",bed, "bathroom", bath]

# Print areas
print(areas)

---------------3-------------------------------------

  • Select the valid list
  • my_list = [el1, el2, el3]

both of them are correct:A. [1, 3, 4, 2] B. [[1, 2, 3], [4, 5, 7]] C. [1 + 2, "a" * 5, 3]

Subsetting lists

  • Subset and conquer

x = ["a", "b", "c", "d"]
x[1]
x[-3] # same result!
  • Subset and calculate

x = ["a", "b", "c", "d"]
print(x[1] + x[3])
  • Slicing and dicing

x = ["a", "b", "c", "d"]
x[1:3]

The elements with index 1 and 2 are included, while the element with index 3 is not.

  • Slicing and dicing (2)

x = ["a", "b", "c", "d"]
x[:2]
x[2:]
x[:]
  • Subsetting lists of lists

x = [["a", "b", "c"],
["d", "e", "f"],
["g", "h", "i"]]
x[2][0]
x[2][:2]

List Manipulation

--------------------1-----------------------

Replace list elements

x = ["a", "b", "c", "d"]
x[1] = "r"
x[2:] = ["s", "t"]
-------------------2------------

Extend a list

x = ["a", "b", "c", "d"]
y = x + ["e", "f"]
-------------------3------------

Delete list elements

x = ["a", "b", "c", "d"]
del(x[1])
Pay attention here: as soon as you remove an element from a list, the indexes of the elements that come after the deleted element all change!
The ; sign is used to place commands on the same line. The following two code chunks are equivalent:
# Same line
command1; command2 # Separate lines
command1
command2 So if delete two items, pay more attention here. better to use like this del(areas[-4:-2]), instead of "del(areas[10]); del(areas[11])","del(areas[10:11])" "del(areas[-3]); del(areas[-4])", ----------------------------------------------4--------------------------------------------------------------

Inner workings of lists

if use "areas_copy = areas", then they are the same thing, when value in one of them changed, both of them will be changed.

if use "areas_copy = areas[:]", then they are not the same thing, when value in one of them changed, the other one will Not be changed.



Intro to Python for Data Science Learning 2 - List的更多相关文章

  1. Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics

    NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...

  2. Intro to Python for Data Science Learning 7 - 2D NumPy Arrays

    2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...

  3. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...

  4. Intro to Python for Data Science Learning 6 - NumPy

    NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...

  5. Intro to Python for Data Science Learning 4 - Methods

    Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...

  6. Intro to Python for Data Science Learning 3 - functions

    Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...

  7. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  8. Intermediate Python for Data Science learning 1 - Basic plots with matplotlib

    Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...

  9. Intermediate Python for Data Science learning 3 - Customization

    Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...

随机推荐

  1. 【咸鱼教程】TextureMerger1.6.6 一:Egret MovieClip的制作和使用

    几个月没写代码了.然后突然用到TextureMerger,发现不会用序列图做动画了... 于是写下过程,以防忘记... MovieClip主要是用于游戏中的动画制作和播放.支持swf.gif.序列图等 ...

  2. iOS - 开源框架、项目和学习资料汇总(其他篇)

    数据库 1. FMDB – sqlite的工具, 多线程FMDatabaseQueue实例,FMDB数据库的使用演示和封装工具类.GXDatabaseUtils – 在FMDB基础上的工具.2. re ...

  3. Mongodb高级篇-性能优化

    1.监控 mongodb可以通过profile来监控数据,进行优化. 查看当前是否开启profile功能用命令:db.getProfilingLevel()返回level等级,值为0|1|2,分别代表 ...

  4. 【微信小程序】---线上环境搭建

    一.前言 通常我们在本地电脑上开发微信小程序,调用和访问小程序会有很多问题.特别是在配有自己后端的情况下,我们通过真机访问我们的小程序会出现不可访问的问题 二.线上环境搭建 在这里我们主要以腾讯云给大 ...

  5. POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]

    嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...

  6. Chrome浏览器扩展 获取用户密码

    Chrome 浏览器允许安装第三方扩展程序以扩展浏览器并给浏览器加入新的功能,扩展使用 JavaScript 以及 HTMl 编写并允许互相访问和控制 DOM. 因为允许访问 DOM,攻击者就可以读取 ...

  7. 【Python】【Web.py】详细解读Python的web.py框架下的application.py模块

    详细解读Python的web.py框架下的application.py模块   这篇文章主要介绍了Python的web.py框架下的application.py模块,作者深入分析了web.py的源码, ...

  8. xpath教程 1 - 什么是XPath

    xpath教程 1 什么是XPath? XPath (XML Path Language) 是一门在 XML 文档中查找信息的语言,可用来在 XML 文档中对元素和属性进行遍历. W3School官方 ...

  9. mysql 权限管理 grant 命令

    只有root账号可以授权,其他账号不能用grant 授权 mysql> select user(); +----------------+ | user() | +--------------- ...

  10. jquery两稳定版本比较~~

    jquery历经了多个版本的更新,版本上的比较貌似没什么必要性,一般来说新的版本会比旧的版本各方面都略有提升,但由于新版中增加了各种新的功能,难免会引起bug的发生.评估一个版本是否适合当前开发场景使 ...