List

from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-2-python-lists?ex=2

-----------------1-------------------------------------

  • Create a list

As opposed to intbool etc., a list is a compound data type; you can group values together:

a = "is"
b = "nice"
my_list = ["my", "list", a, b]

--------------2----------------------------------------

  • Create list with different types

A list can contain any Python type. Although it's not really common, a list can also contain a mix of Python types including strings, floats, booleans, etc.

# area variables (in square meters)
hall = 11.25
kit = 18.0
liv = 20.0
bed = 10.75
bath = 9.50

# Adapt list areas
areas = ["hallway",hall, "kitchen",kit, "living room", liv, "bedroom",bed, "bathroom", bath]

# Print areas
print(areas)

---------------3-------------------------------------

  • Select the valid list
  • my_list = [el1, el2, el3]

both of them are correct:A. [1, 3, 4, 2] B. [[1, 2, 3], [4, 5, 7]] C. [1 + 2, "a" * 5, 3]

Subsetting lists

  • Subset and conquer

x = ["a", "b", "c", "d"]
x[1]
x[-3] # same result!
  • Subset and calculate

x = ["a", "b", "c", "d"]
print(x[1] + x[3])
  • Slicing and dicing

x = ["a", "b", "c", "d"]
x[1:3]

The elements with index 1 and 2 are included, while the element with index 3 is not.

  • Slicing and dicing (2)

x = ["a", "b", "c", "d"]
x[:2]
x[2:]
x[:]
  • Subsetting lists of lists

x = [["a", "b", "c"],
["d", "e", "f"],
["g", "h", "i"]]
x[2][0]
x[2][:2]

List Manipulation

--------------------1-----------------------

Replace list elements

x = ["a", "b", "c", "d"]
x[1] = "r"
x[2:] = ["s", "t"]
-------------------2------------

Extend a list

x = ["a", "b", "c", "d"]
y = x + ["e", "f"]
-------------------3------------

Delete list elements

x = ["a", "b", "c", "d"]
del(x[1])
Pay attention here: as soon as you remove an element from a list, the indexes of the elements that come after the deleted element all change!
The ; sign is used to place commands on the same line. The following two code chunks are equivalent:
# Same line
command1; command2 # Separate lines
command1
command2 So if delete two items, pay more attention here. better to use like this del(areas[-4:-2]), instead of "del(areas[10]); del(areas[11])","del(areas[10:11])" "del(areas[-3]); del(areas[-4])", ----------------------------------------------4--------------------------------------------------------------

Inner workings of lists

if use "areas_copy = areas", then they are the same thing, when value in one of them changed, both of them will be changed.

if use "areas_copy = areas[:]", then they are not the same thing, when value in one of them changed, the other one will Not be changed.



Intro to Python for Data Science Learning 2 - List的更多相关文章

  1. Intro to Python for Data Science Learning 8 - NumPy: Basic Statistics

    NumPy: Basic Statistics from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/ch ...

  2. Intro to Python for Data Science Learning 7 - 2D NumPy Arrays

    2D NumPy Arrays from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4- ...

  3. Intro to Python for Data Science Learning 5 - Packages

    Packages From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functio ...

  4. Intro to Python for Data Science Learning 6 - NumPy

    NumPy From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-4-numpy?ex=1 ...

  5. Intro to Python for Data Science Learning 4 - Methods

    Methods From:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-function ...

  6. Intro to Python for Data Science Learning 3 - functions

    Functions from:https://campus.datacamp.com/courses/intro-to-python-for-data-science/chapter-3-functi ...

  7. Intermediate Python for Data Science learning 2 - Histograms

    Histograms from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotlib? ...

  8. Intermediate Python for Data Science learning 1 - Basic plots with matplotlib

    Basic plots with matplotlib from:https://campus.datacamp.com/courses/intermediate-python-for-data-sc ...

  9. Intermediate Python for Data Science learning 3 - Customization

    Customization from:https://campus.datacamp.com/courses/intermediate-python-for-data-science/matplotl ...

随机推荐

  1. jenkins之-----------在必要的时候并发构建

    jenkins支持在同一节点支持同任务并发,但存在形成报告时会覆盖相应的文件,查看官网后发现有介绍“在必要的时候并发构建” 大致意思就是:将此项勾选后,可以同时执行,执行在任务自己的workspace ...

  2. 判断String 中文混输 长度

    extends:http://www.tuicool.com/articles/EB36Jv public static int calculateLength(String etString) { ...

  3. visual studio 2013设置背景图片

    今天听了公司的一个经验分享会,发现VS竟然可以设置背景图片!还是个萌妹子!!被萌了一脸鼻血!!! 设置方法很简单:安装扩展ClaudiaIDE 1.在这里下载扩展,https://visualstud ...

  4. srilm使用杂记

    训练n-gram语言模型 ngram-count -text train.txt -order -lm model -kndiscount -interpolate -gt3min -gt4min 计 ...

  5. postgresql----网络地址类型和函数

    本人对网络这块实在是搞不清楚,要是能有人推荐一下资料就好了!不知道有没有跟我一样呢?!所以在这里先贴一点从其他地方搞来的一些IPv4的东东. IPv4主要包括一下5类地址 A类: 0 7位 网络号 2 ...

  6. jQuery的下面是动态表格动态表单中的HTML代码

    动态表格动态表单中的Jquery代码 <script type="text/javascript" src="/include/jquery/jquery-1.1. ...

  7. python2和python3的不同

    1.性能 Py3.0运行 pystone benchmark的速度比Py2.5慢30%.Guido认为Py3.0有极大的优化空间,在字符串和整形操作上可 以取得很好的优化结果. Py3.1性能比Py2 ...

  8. POJ_3616_Milking Time

    Milking Time Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10841   Accepted: 4564 Des ...

  9. 自定义maven插件

    之前虽然一直知道maven插件是可以自定义的,不过一致没有用过.最近接触到了swagger项目中的codegen自动生成代码的功能,并且在codegen源码中,也是存在maven插件功能的,所以自己就 ...

  10. Flip Game---poj1753(状压+bfs)

    题目链接:http://poj.org/problem?id=1753    题意:是有一个4X4的图,b代表黑色,w代表白色,问最少翻转几次可以把所有的点变成白色或者黑色,每次翻转一个点时,可以把它 ...