Description

设计数据结构支持:

1 x  若x不存在,插入x

2 x  若x存在,删除x

3    输出当前最小值,若不存在输出-1

4    输出当前最大值,若不存在输出-1

5 x  输出x的前驱,若不存在输出-1

6 x  输出x的后继,若不存在输出-1

7 x  若x存在,输出1,否则输出-1

Input

第一行给出n,m 表示出现数的范围和操作个数

接下来m行给出操作

n<=10^6,m<=2*10^6,0<=x<n

常规做法是用线段树,但根据这题的特点,还有很多其它数据结构可以用。

将线段树和trie结合,可得每个结点有8个子结点的线段树,每个结点压位维护8个子树是否非空。

预处理每个状态最左/右非空子树位置。

插入或删除时自底向上修改。查询前驱后继时自底向上找到前驱或后继所在区间再向下找到其具体位置。

最后加读入/输出优化,比zkw线段树略快一点,内存也省了很多。

#include<cstdio>
inline int read(){
char c=getchar();
int x=;
while(c>''||c<'')c=getchar();
while(c>=''&&c<='')
x=x*+c-'',c=getchar();
return x;
}
char str[];
inline void print(int x){
if(!x){
puts("");
return;
}
if(x<)putchar('-'),x=-x;
int p=;
while(x)str[p++]=x%+'',x/=;
while(p)putchar(str[--p]);
putchar();
}
bool d[];
unsigned char ds[][];
int lp[],rp[];
int ls[],rs[];
inline void ins(int x){
if(d[x])return;
d[x]=;
for(int i=;i<=;i++)ds[i][x>>i*]|=<<((x>>i*-)&);
}
inline void del(int x){
if(d[x])d[x]=;
else return;
for(int i=;i<=;i++)if(ds[i][x>>i*]^=<<((x>>i*-)&))return;
}
inline int minv(){
if(!ds[][])return -;
register int p=lp[ds[][]];
for(int i=;i;--i)p=(p<<)+lp[ds[i][p]];
return p;
}
inline int maxv(){
if(!ds[][])return -;
register int p=rp[ds[][]];
for(int i=;i;--i)p=(p<<)+rp[ds[i][p]];
return p;
}
inline int prv(int p){
if(!ds[][])return -;
register int s=ds[][p>>]&ls[p&];
if(s)return (p^(p&))|rp[s];
for(int i=;i<=;i++){
p>>=;
s=ds[i][p>>]&ls[p&];
if(s){
p=(p^(p&))|rp[s];
for(int j=i-;j;--j)p=(p<<)|rp[ds[j][p]];
return p;
}
}
return -;
}
inline int nxt(int p){
if(!ds[][])return -;
register int s=ds[][p>>]&rs[p&];
if(s)return (p^(p&))|lp[s];
for(int i=;i<=;i++){
p>>=;
s=ds[i][p>>]&rs[p&];
if(s){
p=(p^(p&))|lp[s];
for(int j=i-;j;--j)p=(p<<)|lp[ds[j][p]];
return p;
}
}
return -;
}
int n,m,a,b;
int main(){
for(int i=;i<;i++){
int j=;
while(!(i&<<j))++j;
lp[i]=j;
j=;
while(!(i&<<j))--j;
rp[i]=j;
}
for(int i=;i<;i++)ls[i]=>>-i,rs[i]=&(<<i+);
n=read();
m=read();
for(int i=;i<m;i++){
a=read();
if(a<){
b=read();
if(a==)ins(b);
else if(a==)del(b);
}else if(a>){
b=read();
if(a==)print(prv(b));
else if(a==)print(nxt(b));
else if(a==)puts(d[b]&&ds[][b>>]&<<(b&)?"":"-1");
}else if(a==)print(minv());
else if(a==)print(maxv()); }
return ;
}

bzoj3685 普通veb树的更多相关文章

  1. bzoj 3685: 普通van Emde Boas树

    3685: 普通van Emde Boas树 Description 设计数据结构支持:1 x  若x不存在,插入x2 x  若x存在,删除x3    输出当前最小值,若不存在输出-14    输出当 ...

  2. PLAN OF HEOI(unfinished)

    Au:整体二分/计算几何/多项式/fwtAg:可持久化重量平衡树/线段树分治/线段树合并/最短路树/最短路DAGCu:三分Up:博弈论/置换群/杜教筛/矩阵树定理/BSGS/动态树分治/网络流(线性规 ...

  3. bzoj题目分类

    转载于http://blog.csdn.net/creationaugust/article/details/513876231000:A+B 1001:平面图最小割,转对偶图最短路 1002:矩阵树 ...

  4. Largest Submatrix 3 CodeForces - 407D (dp,好题)

    大意: 给定矩阵, 求选出一个最大矩形, 满足矩形内每个元素互不相同. 考虑枚举上下左三个边界, 求出最大右边界的位置. 注意到固定上边界, 下边界递推时, 每个左边界对应最大右边界是单调不增的. 所 ...

  5. 【BZOJ3685】【zkw权值线段树】普通van Emde Boas树

    原题传送门 因为马上要开始搞树套树了,所以学了一波权值线段树...毕竟是会点zkw线段树的,所以zkw线段树大法好! 解题思路: 介绍一下权值线段树吧,其实感觉就是线段树的本义,就是你用线段树维护了数 ...

  6. bzoj3685普通van Emde Boas树 线段树

    3685: 普通van Emde Boas树 Time Limit: 9 Sec  Memory Limit: 128 MBSubmit: 1932  Solved: 626[Submit][Stat ...

  7. 【权值分块】bzoj3685 普通van Emde Boas树

    权值分块,虽然渐进复杂度不忍直视,但其极小的常数使得实际运行起来比平衡树快,大多数情况和递归版权值线段树差不多,有时甚至更快.但是被zkw线段树完虐. #include<cstdio> # ...

  8. 【bzoj3685】普通van Emde Boas树 权值zkw线段树

    原文地址:http://www.cnblogs.com/GXZlegend/p/6809743.html 题目描述 设计数据结构支持:1 x  若x不存在,插入x2 x  若x存在,删除x3    输 ...

  9. 【bzoj3685】普通van Emde Boas树 线段树

    普通van Emde Boas树 Time Limit: 9 Sec  Memory Limit: 128 MBSubmit: 1969  Solved: 639[Submit][Status][Di ...

随机推荐

  1. python break continue跳过和跳出循环

    break 语句可以跳出 for 和 while 的循环体.continue语句被用来告诉Python跳过当前循环块中的剩余语句,然后继续进行下一轮循环.用break continue 写一个乘法表下 ...

  2. Triangles 正多边形分割锐角三角形

    题目描述 已知一个圆的圆周被N个点分成了N段等长圆弧,求任意取三个点,组成锐角三角形的个数. 输入 多组数据,每组数据一个N(N <= 1000000) 输出 对于每组数据,输出不同锐角三角形的 ...

  3. python笔记02:列表与元素

    本章将引入一个新的概念:数据结构.数据结构是通过某种方式(例如对元素进行编号)组织在一起的数据元素的集合.这些数据元素可以是数字或者字符,甚至可以是其他数据结构.在python中,最基本的数据结构是序 ...

  4. <NET CLR via c# 第4版>笔记 第18章 定制特性

    18.1 使用定制特性 FCL 中的几个常用定制特性. DllImport 特性应用于方法,告诉 CLR 该方法的实现位于指定 DLL 的非托管代码中. Serializable 特性应用于类型,告诉 ...

  5. sql server 表结构 导出 到excel

    SELECT 表名 then d.name else '' end, 表说明 then isnull(f.value,'') else '' end, -- 字段序号 = a.colorder, 字段 ...

  6. C++内存管理的原则

    内存管理原则,就是“谁创建,谁释放”或者说“谁申请,谁释放”. 简单地说,在代码上体现为,调用new或malloc等内存分配的人,同时需在内存使用完成后调用delete或free释放. 这个原则看似大 ...

  7. Python+Requests接口测试教程(2):requests

    开讲前,告诉大家requests有他自己的官方文档:http://cn.python-requests.org/zh_CN/latest/ 2.1 发get请求 前言requests模块,也就是老污龟 ...

  8. Gradle 下载不了

    可自行下载对应的 gradle-x.x-all.zip 放在下列目录 C:\Users\penno\.gradle\wrapper\dists\gradle-4.4-all\9br9xq1tocpiv ...

  9. 2018C语言助教总结

    回顾 很荣幸得到各位老师的认可,担任计科3班和4班的C语言课程助教,很感谢车老师和牛老师一学期的帮助,使得我更好的担任助教一职.我班学生59名,很愉快的与同学们度过一个美好的学期,其实作为助教同样从学 ...

  10. 《DSP using MATLAB》Problem 3.17

    用差分方程两边进行z变换,再变量带换得到频率响应函数(或转移函数,即LTI系统脉冲响应的DTFT). 代码: %% ------------------------------------------ ...