(原创)C++11改进我们的程序之简化我们的程序(七)
这次要讲的内容是:c++11中的tuple(元组)。tuple看似简单,其实它是简约而不简单,可以说它是c++11中一个既简单又复杂的东东,关于它简单的一面是它很容易使用,复杂的一面是它内部隐藏了太多细节,要揭开它神秘的面纱时又比较困难。
tuple是一个固定大小的不同类型值的集合,是泛化的std::pair。和c#中的tuple类似,但是比c#中的tuple强大得多。我们也可以把他当做一个通用的结构体来用,不需要创建结构体又获取结构体的特征,在某些情况下可以取代结构体使程序更简洁,直观。
基本用法
构造一个tuple
tuple<const char*, int>tp = make_tuple(sendPack,nSendSize); //构造一个tuple
这个tuple等价于一个结构体
struct A
{
char* p;
int len;
};
用tuple<const char*, int>tp就可以不用创建这个结构体了,而作用是一样的,是不是更简洁直观了。还有一种方法也可以创建元组,用std::tie,它会创建一个元组的左值引用。
auto tp = return std::tie(, "aa", );
//tp的类型实际是:
std::tuple<int&,string&, int&>
再看看如何获取它的值:
const char* data = std::get<>(); //获取第一个值
int len = std::get<>(); //获取第二个值
还有一种方法也可以获取元组的值,通过std::tie解包tuple
int x,y;
string a;
std::tie(x,a,y) = tp;
通过tie解包后,tp中三个值会自动赋值给三个变量。
解包时,我们如果只想解某个位置的值时,可以用std::ignore占位符来表示不解某个位置的值。比如我们只想解第三个值时:
std::tie(std::ignore,std::ignore,y) = tp; //只解第三个值了
还有一个创建右值的引用元组方法:forward_as_tuple。
std::map<int, std::string> m;
m.emplace(std::piecewise_construct,
std::forward_as_tuple(10),
std::forward_as_tuple(20, 'a'));
它实际上创建了一个类似于std::tuple<int&&, std::string&&>类型的tuple。
我们还可以通过tuple_cat连接多个tupe
int main()
{
std::tuple<int, std::string, float> t1(, "Test",
3.14);
int n = ;
auto t2 = std::tuple_cat(t1, std::make_pair("Foo",
"bar"), t1, std::tie(n));
n = ;
print(t2);
}
输出结果:
(, Test, 3.14, Foo, bar, , Test, 3.14, )
到这里tuple的用法介绍完了,是不是很简单,也很容易使用,相信你使用它之后就离不开它了。我前面说过tuple是简约而不简单。它有很多高级的用法。它和模板元关系密切,要介绍它的高级用法的时候,读者需要一定的模板元基础,如果你只是把它当一个泛型的pair去使用时,这部分可以不看,如果你想用它高级用法的时候就往下看。让我们要慢慢揭开tuple神秘的面纱。
tuple的高级用法
获取tuple中某个位置元素的类型
通过std::tuple_element获取元素类型。
template<typename Tuple>
void Fun(Tuple& tp)
{
std::tuple_element<,Tuple>::type first = std::get<>
(mytuple);
std::tuple_element<,Tuple>::type second = std::get<>
(mytuple);
}
获取tuple中元素的个数:
tuple t;
int size = std::tuple_size<decltype(t))>::value;
遍历tuple中的每个元素
因为tuple的参数是变长的,也没有for_each函数,如果我们想遍历tuple中的每个元素,需要自己写代码实现。比如我要打印tuple中的每个元素。
template<class Tuple, std::size_t N>
struct TuplePrinter {
static void print(const Tuple& t)
{
TuplePrinter<Tuple, N - >::print(t);
std::cout << ", " << std::get<N - >(t);
}
}; template<class Tuple>
struct TuplePrinter<Tuple, >{
static void print(const Tuple& t)
{
std::cout << std::get<>(t);
}
}; template<class... Args>
void PrintTuple(const std::tuple<Args...>& t)
{
std::cout << "(";
TuplePrinter<decltype(t), sizeof...(Args)>::print(t);
std::cout << ")\n";
}
根据tuple元素值获取其对应的索引位置
namespace detail
{
template<int I, typename T, typename... Args>
struct find_index
{
static int call(std::tuple<Args...> const& t, T&& val)
{
return (std::get<I - >(t) == val) ? I - :
find_index<I - , T, Args...>::call(t, std::forward<T>(val));
}
}; template<typename T, typename... Args>
struct find_index<, T, Args...>
{
static int call(std::tuple<Args...> const& t, T&& val)
{
return (std::get<>(t) == val) ? : -;
}
};
} template<typename T, typename... Args>
int find_index(std::tuple<Args...> const& t, T&& val)
{
return detail::find_index<, sizeof...(Args) - , T, Args...>::
call(t, std::forward<T>(val));
} int main()
{
std::tuple<int, int, int, int> a(, , , );
std::cout << find_index(a, ) << std::endl; // Prints 2
std::cout << find_index(a, ) << std::endl; // Prints 0
std::cout << find_index(a, ) << std::endl; // Prints -1 (not found)
}
展开tuple,并将tuple元素作为函数的参数。这样就可以根据需要对tuple元素进行处理了
#include <tuple>
#include <type_traits>
#include <utility> template<size_t N>
struct Apply {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T && t, A &&... a)
-> decltype(Apply<N->::apply(
::std::forward<F>(f), ::std::forward<T>(t),
::std::get<N->(::std::forward<T>(t)),
::std::forward<A>(a)...
))
{
return Apply<N->::apply(::std::forward<F>(f),
::std::forward<T>(t),
::std::get<N->(::std::forward<T>(t)),
::std::forward<A>(a)...
);
}
}; template<>
struct Apply<> {
template<typename F, typename T, typename... A>
static inline auto apply(F && f, T &&, A &&... a)
-> decltype(::std::forward<F>(f)
(::std::forward<A>(a)...))
{
return ::std::forward<F>(f)(::std::forward<A>
(a)...);
}
}; template<typename F, typename T>
inline auto apply(F && f, T && t)
-> decltype(Apply< ::std::tuple_size<
typename ::std::decay<T>::type
>::value>::apply(::std::forward<F>(f),
::std::forward<T>(t)))
{
return Apply< ::std::tuple_size<
typename ::std::decay<T>::type
>::value>::apply(::std::forward<F>(f),
::std::forward<T>(t));
} void one(int i, double d)
{
std::cout << "function one(" << i << ", " << d <<
");\n";
}
int two(int i)
{
std::cout << "function two(" << i << ");\n";
return i;
} //测试代码
int main()
{
std::tuple<int, double> tup(, 4.5);
apply(one, tup); int d = apply(two, std::make_tuple()); return ;
}
看到这里,想必大家对tuple有了一个全面的认识了吧,怎么样,它是简约而不简单吧。对模板元不熟悉的童鞋可以不看tuple高级用法部分,不要为看不懂而捉急,没事的,高级部分一般用不到,知道基本用法就够用了。
tuple和vector比较:
vector只能容纳同一种类型的数据,tuple可以容纳任意类型的数据;
vector和variant比较:
二者都可以容纳不同类型的数据,但是variant的类型个数是固定的,而tuple的类型个数不是固定的,是变长的,更为强大。
c++11 boost技术交流群:296561497,欢迎大家来交流技术。
(原创)C++11改进我们的程序之简化我们的程序(七)的更多相关文章
- (原创)C++11改进我们的程序之简化我们的程序(八)
本次要讲的是如何通过泛型函数来简化我们的程序. 泛型函数除了之前介绍的一些优点外还有两个重要的优点 1.消除重复逻辑,提高程序的内聚性和健壮性 泛型函数在某种程度上用来弥补泛型类型的不足.通过泛型类型 ...
- (原创)C++11改进我们的程序之简化我们的程序(二)
这次要讲的是:C++11如何通过组合函数来简化我们的程序.关于组合函数,大家可能对这个概念有点陌生.组合函数是将N个一元函数组成一种更复杂的函数,每个函数的返回值作为参数传给下一个函数,直到传到最后一 ...
- C++11改进我们的程序之简化我们的程序1
C++11改进我们的程序之简化我们的程序(一) C++11在很多方面可以简化我们的程序开发,我会在“简化我们的程序”这一系列的博文中一一讲到,敬请关注.这次要讲的是:C++11如何通过获取函数模板的返 ...
- (原创)C++11改进我们的程序之简化我们的程序(四)
这次要讲的是:c++11统一初始化.统一begin()/end()和for-loop循环如何简化我们的程序 初始化列表 c++11之前有各种各样的初始化语法,有时候初始化的时候还挺麻烦,比较典型的如v ...
- (原创)C++11改进我们的程序之简化我们的程序(三)
这次要讲的是:C++11如何通过auto.decltype和返回值后置来简化我们的程序. auto和c#中的var类似,都是在初始化时自动推断出数据类型.当某个变量的返回值难于书写时,或者不太确定返回 ...
- (原创)C++11改进我们的程序之简化我们的程序(一)
C++11在很多方面可以简化我们的程序开发,我会在“简化我们的程序”这一系列的博文中一一讲到,敬请关注.这次要讲的是:C++11如何通过获取函数模板的返回值类型来简化我们的程序.在谈到简化之前,我们先 ...
- (原创)c++11改进我们的模式之改进代理模式,实现通用的AOP框架
c++11 boost技术交流群:296561497,欢迎大家来交流技术. 本次要讲的时候如何改进代理模式,具体来说是动态代理模式,动态代理模式一般实现AOP框架,不懂AOP的童鞋看这里.我前面的博文 ...
- (原创)c++11改进我们的模式之改进命令模式
模式虽然精妙,却难完美,比如观察者模式中观察者生命周期的问题:比如访问者模式中循环依赖的问题等等:其它很多模式也存在这样那样的一些不足之处,如使用场景受限.实现复杂.不够简洁.不够通用等.但我觉得不足 ...
- (原创)c++11改进我们的模式之改进访问者模式
本次讲c++11改进我们的模式之改进访问者模式 访问者模式是GOF23个设计模式中比较复杂的模式之一,但是它的功能也很强大,非常适合稳定的继承层次中对象的访问,可以在不修改被访问对象的情况下,动态添加 ...
随机推荐
- Docker安装和常用命令
Docker安装 Docker的安装可以参考 https://docs.docker.com/ 下面的 Get Docker / Docker CE / Linux, 需要关注的主要是CentOS和U ...
- Ubuntu16.04 Arduino UNO R3开发板
使用的是国内改过的版本, usb芯片换成了ch341, 晶振不是原版的16MHz而是12MHz, 杜邦线孔布局和原版一致. 设备连接 在Ubuntu16.04下不需要驱动, 能直接认出ch341设备 ...
- 【TP3.2+Oracle】数据进行分页
1.写在前面:mysql的分页 通过limit 关键字进行处理, oracle却没有limit,而是用ROWNUM 字段来进行分页 2.参考示例,TP3.2 代码,其实原理看懂了 其他框架和原生都可以 ...
- 【laravel5.4】安装指定版本的predis 和 处理laravel5.*安装使用Redis以及解决Class 'Predis\Client' not found和Fatal error: Non-static method Redis::set() cannot be called statically错误
(predis下载地址:https://packagist.org/packages/predis/predis) 1.cmoposer 命令行: php composer require predi ...
- svn备份与还原_脚本_(dump命令)
今天备份svn, 能保证好用就行先, 回头再研究 buerguo.bat @echo off :: 关闭回显 :: 说明:如有命令不明白,请使用帮助命令:命令/? .如:for/? :: 设置标题 t ...
- linux nginx配置新项目加域名(设置绑定域名)
转自:linux nginx配置新项目加域名 找到nginx的配置文件 nginx/nginx.conf 第一种方,法直接在nginx.com里面配置 user www www; worker_pro ...
- 预加载与智能预加载(iOS)
来源:Draveness(@Draveness) 链接:http://www.jianshu.com/p/1519a5302141 前两次的分享分别介绍了 ASDK 对于渲染的优化以及 ASDK 中使 ...
- select收数据
之前写的服务器端 表示都无法收到client发的数据,找不到原因,原来是有个socket接收数据缓冲木有设置,现在设置后就可以正常收到数据啦! server端: #include <winsoc ...
- Linux基本数据类型大小——int,char,long int,long long int
转自:http://paddy-w.iteye.com/blog/1403217 在Linux操作系统下使用GCC进行编程,目前一般的处理器为32位字宽,下面是/usr/include/limit.h ...
- 使用 Apache Commons CSV 读写 CSV 文件
有时候,我们需要读写 CSV 文件,在这里给大家分享Apache Commons CSV,读写 CSV 文件非常方便. 具体官方文档请访问Apache Commons CSV. 官方文档已经写得很详细 ...