R语言 data.frame 大全
A data frame is used for storing data tables. It is a list of vectors of equal length. For example, the following variable df is a data frame containing three vectors n, s, b.
> s = c("aa", "bb", "cc")
> b = c(TRUE, FALSE, TRUE)
> df = data.frame(n, s, b) # df is a data frame
Build-in Data Frame
We use built-in data frames in R for our tutorials. For example, here is a built-in
data frame in R, called mtcars.
mpg cyl disp hp drat wt ...
Mazda RX4 21.0 6 160 110 3.90 2.62 ...
Mazda RX4 Wag 21.0 6 160 110 3.90 2.88 ...
Datsun 710 22.8 4 108 93 3.85 2.32 ...
............
The top line of the table, called the header, contains the column names. Each
horizontal line afterward denotes a data row, which begins with the name of the
row, and then followed by the actual data. Each data member of a row is called a
cell.
To retrieve data in a cell, we would enter its row and column coordinates in the
single square bracket "[]" operator. The two coordinates are separated by a comma.
In other words, the coordinates begins with row position, then followed by a comma,
and ends with the column position. The order is important.
Here is the cell value from the first row, second column of mtcars.
[1] 6
Moreover, we can use the row and column names instead of the numeric
coordinates.
[1] 6
Lastly, the number of data rows in the data frame is given by the nrow function.
[1] 32
And the number of columns of a data frame is given by the ncol function.
[1] 11
Further details of the mtcars data set is available in the R documentation.
Preview
Instead of printing out the entire data frame, it is often desirable to preview it with
the head function beforehand.
mpg cyl disp hp drat wt ...
Mazda RX4 21.0 6 160 110 3.90 2.62 ...
............
访问元素
student[1,]
student[,2]
idname<-student[1:2]
idname<-student[c("ID","Name”)]
name<-student[[2]] 或者name<-student[[“Name”]] 或者name<-student$Name
attach(student)
print(Name)
detach(student)
with(student,{
n<-Name
print(n)
})
修改列数据类型
student$Name<-as.character(student$Name)
student$Birthdate<-as.Date(student$Birthdate)
添加新列
student$Age<-as.integer(format(Sys.Date(),"%Y"))-as.integer(format(student$Birthdate,"%Y”))
student<-within(student,{
Age<-as.integer(format(Sys.Date(),"%Y"))-as.integer(format(Birthdate,"%Y"))
})
查询/子集
Frame,返回一个满足条件的子集,这相当于数据库中的表查询,是非常常见的操作。使用行和列的Index来获取子集是最简单的方法,前面已经提到过。如果我们使用布尔向量,配合which函数,可以实现对行的过滤。比如我们要查询所有Gender为F的数据,那么我们首先对student$Gender==“F”,得到一个布尔向量:FALSE
FALSE TRUE,然后使用which函数可以将布尔向量中TRUE的Index返回,所以我们的完整查询语句就是:
student[which(student$Gender=="F"),]
student[which(student$Gender=="F"),"Age”]
subset(student,Gender=="F" & Age<30 ,select=c("Name","Age"))
x.sub1 <- subset(x.df, y > 2 & V1 > 0.6)
newdata <- subset(mydata, age >= 20 | age < 10, select=c(ID, Weight))
newdata <- subset(mydata, sex=="m" & age > 25, select=weight:income)
x.sub2 <- subset(x.df, y > 2 & V2 > 0.4, select = c(V1, V4))
x.sub3 <- subset(x.df, y > 3, select = V2:V5)
x.sub4 <- x.df[x.df$y == 1, ]
x.sub5 <- x.df[x.df$y %in% c(1, 4), ]
library(sqldf)
result<-sqldf("select Name,Age from student where Gender='F' and Age<30")
连接/合并
score<-data.frame(SID=c(11,11,12,12,13),Course=c("Math","English","Math","Chinese","Math"),Score=c(90,80,80,95,96))
result<-merge(student,score,by.x="ID",by.y="SID")
student2<-data.frame(ID=c(21,22),Name=c("Yan","Peng"),Gender=c("F","M"),Birthdate=c("1982-2-9","1983-1-16"),Age=c(32,31))
rbind(student,student2)
R语言 data.frame 大全的更多相关文章
- R语言Data Frame数据框常用操作
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可 ...
- 转载:R语言Data Frame数据框常用操作
Data Frame一般被翻译为数据框,感觉就像是R中的表,由行和列组成,与Matrix不同的是,每个列可以是不同的数据类型,而Matrix是必须相同的. Data Frame每一列有列名,每一行也可 ...
- R语言data.table包fread读取数据
R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数 ...
- R 给data.frame(dataframe)添加一列
x<-data.frame(apple=c(1,4,2,3),pear=c(4,8,5,2)) x # apple pear # 1 1 4 # 2 4 8 # 3 2 5 # 4 3 2 x$ ...
- R语言数据分析利器data.table包 —— 数据框结构处理精讲
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理 ...
- R语言基因组数据分析可能会用到的data.table函数整理
R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代码简洁,只要一行命令就可以完成诸多任务,另一方面是处理快,内部 ...
- R语言数据分析利器data.table包—数据框结构处理精讲
R语言数据分析利器data.table包-数据框结构处理精讲 R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代 ...
- keep or remove data frame columns in R
You should use either indexing or the subset function. For example : R> df <- data.frame(x=1:5 ...
- R之data.table速查手册
R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领 ...
随机推荐
- Atitit mybatis 3 3.2 3.3 3.4 新特性attilax总结
Atitit mybatis 3 3.2 3.3 3.4 新特性attilax总结 1.1. iBATIS 3 内的新特性.html1 1.2. MyBatis团队于2013年2月21日正式发布 M ...
- (UML总结三)UML与软件project
学习完UML.我们要把它和之前的软件project结合起来.软件project是从总体的角度说了软件开发的步骤.保证了所开发软件的质量.而UML作为一种统一建模语言.是用来设计软件蓝图的可视化建模语言 ...
- spark 分区
http://stackoverflow.com/questions/39368516/number-of-partitions-of-spark-dataframe
- VS2015终极卸载方法
今天打开VS2015发现出问题了,总是停止响应,去控制面板里卸载结果像下面这样,卸载出错!于是我有开始折腾了,重新安装一遍然后,还是有问题,在卸载还是出错于是我决定通过安装介质卸载,结果,悲剧的是,启 ...
- [Windows Azure] How to Create and Deploy a Cloud Service?
The Windows Azure Management Portal provides two ways for you to create and deploy a cloud service: ...
- 一次tomcat配置参数调优Jmeter压力测试记录前后对比
使用的tomcat版本为:apache-tomcat-7.0.53 使用测试工具Jmeter版本为:apache-jmeter-2.12 1.测试前tomat的"server.xml&quo ...
- Android下基于SDL的YUV渲染
实战篇 本文主要参考我之前整理的文章windows下使用SDL进行YUV渲染. 相对于之前写的位图渲染部分(http://www.cnblogs.com/tocy/p/android-sdl-bitm ...
- mysql 添加外键时 error 150 问题总汇
当你试图在mysql中创建一个外键的时候,这个出错会经常发生,这是非常令人沮丧的.像这种不能创建一个.frm 文件的报错好像暗示着操作系统的文件的权限错误或者其它原因,但实际上,这些都不是的,事实上, ...
- 设置模式之单例模式(附上一个Objective-C编写的播放音乐的单例类)
在查阅Cocoa Touch开发文档时,会发现框架中随处可见的大量单例类,比如说,UIApplication.NSFileManager 等. UIApplication 框架中极为常用的一个单例类, ...
- Ubuntu 14.04快速搭建SVN服务器及日常使用
1.介绍 Subversion是一个自由,开源的版本控制系统,这个版本库就像一个普通的文件服务器,不同的是,它可以记录每一次文件和目录的修改情况.这样就可以很方面恢复到以前的版本,并可以查看数据更改 ...