题目链接:http://poj.org/problem?id=1984

Time Limit: 2000MS  Memory Limit: 30000K  Case Time Limit: 1000MS

Description

Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):

           F1 --- (13) ---- F6 --- (9) ----- F3

| |

(3) |

| (7)

F4 --- (20) -------- F2 |

| |

(2) F5

|

F7

Being an ASCII diagram, it is not precisely to scale, of course.

Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path 
(sequence of roads) links every pair of farms.

FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

There is a road of length 10 running north from Farm #23 to Farm #17 
There is a road of length 7 running east from Farm #1 to Farm #17 
...

As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

What is the Manhattan distance between farms #1 and #23?

FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms. 
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..M+1: Each line contains four space-separated entities, F1,

F2, L, and D that describe a road. F1 and F2 are numbers of

two farms connected by a road, L is its length, and D is a

character that is either 'N', 'E', 'S', or 'W' giving the

direction of the road from F1 to F2.

* Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's

queries

* Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob

and contains three space-separated integers: F1, F2, and I. F1

and F2 are numbers of the two farms in the query and I is the

index (1 <= I <= M) in the data after which Bob asks the

query. Data index 1 is on line 2 of the input data, and so on.

Output

* Lines 1..K: One integer per line, the response to each of Bob's

queries. Each line should contain either a distance

measurement or -1, if it is impossible to determine the

appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6

Sample Output

13
-1
10

Hint

At time 1, FJ knows the distance between 1 and 6 is 13. 
At time 3, the distance between 1 and 4 is still unknown. 
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10. 

题意:

有n个节点,给出m条数据,每条数据包含F1,F2,L,D,代表从节点F1到F2的距离为L,D为'E/W/S/N',代表了F1→F2是指向东/西/南/北;

现在又有个人来给出k条询问,每条询问包含F1,F2,IDX,代表了查询节点F1和F2之间的距离,本次查询发生在录入第IDX条数据之后(也就是说本次查询时,第IDX+1条往后的数据都还是未知的);

注意:对于查询的回答,必须按照查询输入的顺序进行输出;同时可能在读入第idx条数据之后,读入第idx+1条数据之前,会有多个查询。

题解:

并查集建树,par[x]代表x的父亲节点,val[x].X和val[x].Y分别代表par[x]->x向量的水平分量和竖直分量;

注意做好find()函数内val[x]的更新、unite两个节点时val[]更新,并且注意将答案按照查询的顺序输出即可。

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=+; int n,m,k; int par[maxn];
struct Val{
int X,Y; //par[x]->x向量的水平分量和竖直分量
}val[maxn];
void init(int l,int r){for(int i=l;i<=r;i++) par[i]=i,val[i].X=val[i].Y=;}
int find(int x)
{
if(par[x]==x) return x;
else
{
int root=find(par[x]);
val[x].X+=val[par[x]].X;
val[x].Y+=val[par[x]].Y;
return par[x]=root;
}
} struct Data{
int F1,F2,L;
char D[];
}data[maxn]; vector<int> D2Q[maxn]; //Data->Query
struct Query{
int F1,F2;
int id; //记录下是第id个查询
}query[maxn]; struct Res{
int val; //第id个查询的答案值
int id; //代表本结果是对应到第id个查询的
Res(int val,int id){this->val=val,this->id=id;}
bool operator<(const Res &oth)const
{
return id<oth.id;
}
}; int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++) scanf("%d%d%d%s",&data[i].F1,&data[i].F2,&data[i].L,data[i].D); scanf("%d",&k);
for(int i=;i<=n;i++) D2Q[i].clear();
for(int i=,idx;i<=k;i++)
{
scanf("%d%d%d",&query[i].F1,&query[i].F2,&idx);
query[i].id=i;
D2Q[idx].push_back(query[i].id); //记录一下第i个询问发生在第idx个数据之后
} init(,n);
vector<Res> res;
for(int i=,a,b,t1,t2;i<=m;i++)
{
a=data[i].F1, b=data[i].F2;
t1=find(a), t2=find(b);
if(t1!=t2)
{
par[t2]=t1;
int dX,dY; //dX是a->b向量的水平分量,dY是a->b向量的竖直分量
if(data[i].D[]=='E') dX=data[i].L, dY=;
if(data[i].D[]=='W') dX=-data[i].L, dY=;
if(data[i].D[]=='N') dX=, dY=data[i].L;
if(data[i].D[]=='S') dX=, dY=-data[i].L;
val[t2].X=val[a].X+dX-val[b].X;
val[t2].Y=val[a].Y+dY-val[b].Y;
} //在录入本次数据之后,查看是否有查询,若有尝试进行回答
for(int j=,_size=D2Q[i].size();j<_size;j++)
{
Query Q=query[D2Q[i][j]];
a=Q.F1, b=Q.F2;
t1=find(a), t2=find(b); int ans;
if(t1!=t2) ans=-;
else ans=abs(val[a].X-val[b].X)+abs(val[a].Y-val[b].Y); res.push_back(Res(ans,Q.id)); //将查询结果进行记录
}
} sort(res.begin(),res.end()); //将查询的结果按照之前查询的顺序排列
for(int i=;i<res.size();i++) printf("%d\n",res[i].val);
}

POJ 1984 - Navigation Nightmare - [带权并查集]的更多相关文章

  1. POJ 1984 Navigation Nightmare 带全并查集

    Navigation Nightmare   Description Farmer John's pastoral neighborhood has N farms (2 <= N <= ...

  2. BZOJ 3362 Navigation Nightmare 带权并查集

    题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题.只是POJ也有一道相同的题,能够刷一下 别被题目坑到了,这题不强制在线.把询问离线处理就可以 然后就是带权并查集的问题了.. ...

  3. POJ-1984-Navigation Nightmare+带权并查集(中级

    传送门:Navigation Nightmare 参考:1:https://www.cnblogs.com/huangfeihome/archive/2012/09/07/2675123.html 参 ...

  4. POJ 1773 Parity game 带权并查集

    分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...

  5. POJ 1182 食物链 【带权并查集】

    <题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...

  6. POJ 1182 食物链 (带权并查集)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78551   Accepted: 23406 Description ...

  7. POJ 1182 食物链 【带权并查集/补集法】

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...

  8. POJ 1733 Parity game (带权并查集)

    题意:有序列A[1..N],其元素值为0或1.有M条信息,每条信息表示区间[L,R]中1的个数为偶数或奇数个,但是可能有错误的信息.求最多满足前多少条信息. 分析:区间统计的带权并查集,只是本题中路径 ...

  9. poj 1182 食物链【带权并查集】

    设相等的边权为0,吃的边权为,被吃的边权为2,然后用带权并查集在%3的意义下做加法即可 关系为简单环的基本都可以用模环长的方式是用带权并查集 #include<iostream> #inc ...

随机推荐

  1. ios学习之UIWebView网页视图调整

    //先来一个可行的小Demo程序:结合searchBar的google搜索 #import <UIKit/UIKit.h> @interface ViewController : UIVi ...

  2. SpringMVC由浅入深day02_4springmvc校验

    4 springmvc校验 4.1 校验Validation理解 b/s系统中对http请求数据的校验多数在客户端进行,这也是出于简单及用户体验性上考虑,但是在一些安全性要求高的系统中服务端校验是不可 ...

  3. trim思考

    今天发现后台订单商品名称没有的时候出现了HTML代码,然后看了一下源代码(下图是简化版本的) <?php $name = trim('<span style="font-weig ...

  4. Windows命令行参数的知识(一)

    最近没事的时候,准备研究一下Windows命令行参数的知识,因为每次自己在操作电脑时总是效率太慢,如果能够了解Windows参数的一些知识,绝对能提高效率! 基本外部命令和内部命令 首先是基本的知识, ...

  5. centos7/nginx/tornado错误异常收集

    临时方法 – 设置系统参数 使用命令setenforce 附: setenforce 设置SELinux 成为enforcing模式 setenforce 设置SELinux 成为permissive ...

  6. linux下添加,删除,修改,查看用户和用户组

    标签:gpasswd, groupadd, groupdel, groupmod, linux, useradd, userdel, usermod, who 一,组操作 1,创建组 groupadd ...

  7. codeforces水题100道 第九题 Codeforces Beta Round #63 (Div. 2) Young Physicist (math)

    题目链接:http://www.codeforces.com/problemset/problem/69/A题意:给你n个三维空间矢量,求这n个矢量的矢量和是否为零.C++代码: #include & ...

  8. IOS设计模式第五篇之装饰设计模式的代理设计模式

    版权声明:原创作品,谢绝转载!否则将追究法律责任. 代理: 另一个装饰设计模式,代理,是一个代表或者协调另一个对象的行为机制.例如当你用一个tableView,你必须实现他里面的一个tableView ...

  9. Python六大开源框架对比:Web2py略胜一筹(转)

    Python是一门动态.面向对象语言.其最初就是作为一门面向对象语言设计的,并且在后期又加入了一些更高级的特性.除了语言本身的设计目的之外,Python标准库也是值得大家称赞的,Python甚至还自带 ...

  10. 【SpringBoot整合Elasticsearch】SpringBoot整合ElasticSearch

    一.Linux下安装ElasticSearch 1.检测是否安装了Elasticsearch ps aux |grep elasticsearch 2.安装JDK 3.下载Elasticsearch ...