题目链接:http://poj.org/problem?id=1984

Time Limit: 2000MS  Memory Limit: 30000K  Case Time Limit: 1000MS

Description

Farmer John's pastoral neighborhood has N farms (2 <= N <= 40,000), usually numbered/labeled 1..N. A series of M (1 <= M < 40,000) vertical and horizontal roads each of varying lengths (1 <= length <= 1000) connect the farms. A map of these farms might look something like the illustration below in which farms are labeled F1..F7 for clarity and lengths between connected farms are shown as (n):

           F1 --- (13) ---- F6 --- (9) ----- F3

| |

(3) |

| (7)

F4 --- (20) -------- F2 |

| |

(2) F5

|

F7

Being an ASCII diagram, it is not precisely to scale, of course.

Each farm can connect directly to at most four other farms via roads that lead exactly north, south, east, and/or west. Moreover, farms are only located at the endpoints of roads, and some farm can be found at every endpoint of every road. No two roads cross, and precisely one path 
(sequence of roads) links every pair of farms.

FJ lost his paper copy of the farm map and he wants to reconstruct it from backup information on his computer. This data contains lines like the following, one for every road:

There is a road of length 10 running north from Farm #23 to Farm #17 
There is a road of length 7 running east from Farm #1 to Farm #17 
...

As FJ is retrieving this data, he is occasionally interrupted by questions such as the following that he receives from his navigationally-challenged neighbor, farmer Bob:

What is the Manhattan distance between farms #1 and #23?

FJ answers Bob, when he can (sometimes he doesn't yet have enough data yet). In the example above, the answer would be 17, since Bob wants to know the "Manhattan" distance between the pair of farms. 
The Manhattan distance between two points (x1,y1) and (x2,y2) is just |x1-x2| + |y1-y2| (which is the distance a taxicab in a large city must travel over city streets in a perfect grid to connect two x,y points).

When Bob asks about a particular pair of farms, FJ might not yet have enough information to deduce the distance between them; in this case, FJ apologizes profusely and replies with "-1".

Input

* Line 1: Two space-separated integers: N and M

* Lines 2..M+1: Each line contains four space-separated entities, F1,

F2, L, and D that describe a road. F1 and F2 are numbers of

two farms connected by a road, L is its length, and D is a

character that is either 'N', 'E', 'S', or 'W' giving the

direction of the road from F1 to F2.

* Line M+2: A single integer, K (1 <= K <= 10,000), the number of FB's

queries

* Lines M+3..M+K+2: Each line corresponds to a query from Farmer Bob

and contains three space-separated integers: F1, F2, and I. F1

and F2 are numbers of the two farms in the query and I is the

index (1 <= I <= M) in the data after which Bob asks the

query. Data index 1 is on line 2 of the input data, and so on.

Output

* Lines 1..K: One integer per line, the response to each of Bob's

queries. Each line should contain either a distance

measurement or -1, if it is impossible to determine the

appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6 1
1 4 3
2 6 6

Sample Output

13
-1
10

Hint

At time 1, FJ knows the distance between 1 and 6 is 13. 
At time 3, the distance between 1 and 4 is still unknown. 
At the end, location 6 is 3 units west and 7 north of 2, so the distance is 10. 

题意:

有n个节点,给出m条数据,每条数据包含F1,F2,L,D,代表从节点F1到F2的距离为L,D为'E/W/S/N',代表了F1→F2是指向东/西/南/北;

现在又有个人来给出k条询问,每条询问包含F1,F2,IDX,代表了查询节点F1和F2之间的距离,本次查询发生在录入第IDX条数据之后(也就是说本次查询时,第IDX+1条往后的数据都还是未知的);

注意:对于查询的回答,必须按照查询输入的顺序进行输出;同时可能在读入第idx条数据之后,读入第idx+1条数据之前,会有多个查询。

题解:

并查集建树,par[x]代表x的父亲节点,val[x].X和val[x].Y分别代表par[x]->x向量的水平分量和竖直分量;

注意做好find()函数内val[x]的更新、unite两个节点时val[]更新,并且注意将答案按照查询的顺序输出即可。

AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=+; int n,m,k; int par[maxn];
struct Val{
int X,Y; //par[x]->x向量的水平分量和竖直分量
}val[maxn];
void init(int l,int r){for(int i=l;i<=r;i++) par[i]=i,val[i].X=val[i].Y=;}
int find(int x)
{
if(par[x]==x) return x;
else
{
int root=find(par[x]);
val[x].X+=val[par[x]].X;
val[x].Y+=val[par[x]].Y;
return par[x]=root;
}
} struct Data{
int F1,F2,L;
char D[];
}data[maxn]; vector<int> D2Q[maxn]; //Data->Query
struct Query{
int F1,F2;
int id; //记录下是第id个查询
}query[maxn]; struct Res{
int val; //第id个查询的答案值
int id; //代表本结果是对应到第id个查询的
Res(int val,int id){this->val=val,this->id=id;}
bool operator<(const Res &oth)const
{
return id<oth.id;
}
}; int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++) scanf("%d%d%d%s",&data[i].F1,&data[i].F2,&data[i].L,data[i].D); scanf("%d",&k);
for(int i=;i<=n;i++) D2Q[i].clear();
for(int i=,idx;i<=k;i++)
{
scanf("%d%d%d",&query[i].F1,&query[i].F2,&idx);
query[i].id=i;
D2Q[idx].push_back(query[i].id); //记录一下第i个询问发生在第idx个数据之后
} init(,n);
vector<Res> res;
for(int i=,a,b,t1,t2;i<=m;i++)
{
a=data[i].F1, b=data[i].F2;
t1=find(a), t2=find(b);
if(t1!=t2)
{
par[t2]=t1;
int dX,dY; //dX是a->b向量的水平分量,dY是a->b向量的竖直分量
if(data[i].D[]=='E') dX=data[i].L, dY=;
if(data[i].D[]=='W') dX=-data[i].L, dY=;
if(data[i].D[]=='N') dX=, dY=data[i].L;
if(data[i].D[]=='S') dX=, dY=-data[i].L;
val[t2].X=val[a].X+dX-val[b].X;
val[t2].Y=val[a].Y+dY-val[b].Y;
} //在录入本次数据之后,查看是否有查询,若有尝试进行回答
for(int j=,_size=D2Q[i].size();j<_size;j++)
{
Query Q=query[D2Q[i][j]];
a=Q.F1, b=Q.F2;
t1=find(a), t2=find(b); int ans;
if(t1!=t2) ans=-;
else ans=abs(val[a].X-val[b].X)+abs(val[a].Y-val[b].Y); res.push_back(Res(ans,Q.id)); //将查询结果进行记录
}
} sort(res.begin(),res.end()); //将查询的结果按照之前查询的顺序排列
for(int i=;i<res.size();i++) printf("%d\n",res[i].val);
}

POJ 1984 - Navigation Nightmare - [带权并查集]的更多相关文章

  1. POJ 1984 Navigation Nightmare 带全并查集

    Navigation Nightmare   Description Farmer John's pastoral neighborhood has N farms (2 <= N <= ...

  2. BZOJ 3362 Navigation Nightmare 带权并查集

    题目大意:给定一些点之间的位置关系,求两个点之间的曼哈顿距离 此题土豪题.只是POJ也有一道相同的题,能够刷一下 别被题目坑到了,这题不强制在线.把询问离线处理就可以 然后就是带权并查集的问题了.. ...

  3. POJ-1984-Navigation Nightmare+带权并查集(中级

    传送门:Navigation Nightmare 参考:1:https://www.cnblogs.com/huangfeihome/archive/2012/09/07/2675123.html 参 ...

  4. POJ 1773 Parity game 带权并查集

    分析:带权并查集,就是维护一堆关系 然后就是带权并查集的三步 1:首先确定权值数组,sum[i]代表父节点到子节点之间的1的个数(当然路径压缩后代表到根节点的个数) 1代表是奇数个,0代表偶数个 2: ...

  5. POJ 1182 食物链 【带权并查集】

    <题目链接> 题目大意: 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我 ...

  6. POJ 1182 食物链 (带权并查集)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 78551   Accepted: 23406 Description ...

  7. POJ 1182 食物链 【带权并查集/补集法】

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种.有人用两种说 ...

  8. POJ 1733 Parity game (带权并查集)

    题意:有序列A[1..N],其元素值为0或1.有M条信息,每条信息表示区间[L,R]中1的个数为偶数或奇数个,但是可能有错误的信息.求最多满足前多少条信息. 分析:区间统计的带权并查集,只是本题中路径 ...

  9. poj 1182 食物链【带权并查集】

    设相等的边权为0,吃的边权为,被吃的边权为2,然后用带权并查集在%3的意义下做加法即可 关系为简单环的基本都可以用模环长的方式是用带权并查集 #include<iostream> #inc ...

随机推荐

  1. SQL Server 2008 清空删除日志文件 130G日志 10秒内变10M

    SQL2005: Backup Log DNName with no_log  '这里的DNName是你要收缩的数据库名,自己注意修改下面的数据库名,我就不再注释了. go dump transact ...

  2. Java -- IO -- 目录

    操作文件的类 -- -- File File类的基本介绍 使用File类操作文件 范例 -- -- 列出指定目录的全部内容 RandomAccessFile类 使用RandomAccessFile类写 ...

  3. 屏蔽win10中文输入法

    Windows 10自带的默认输入法,是通过Shift键来切换中/英文,这样为玩一些不需要打字,却需要使用Shift键的游戏带来了不便,比如,在进行游戏的时候,按下Shift键后,再按跳跃.射击等键, ...

  4. HttpClientUtil请求http地址的工具类

    直接贴代码: import java.io.IOException; import java.util.HashMap; import java.util.Map; import org.apache ...

  5. 《转载》WIN10 64位系统 32位Python2.7 PIL安装

    http://blog.csdn.net/kanamisama0/article/details/53960281 首先安装这个真的出了好多问题,之前装过一次PIL也失败了,就一直没管,今天刚好找了机 ...

  6. WP8.1学习系列(第十章)——中心控件Hub设计指南

    Windows Phone 应用商店应用中的中心控件指南   在本文中 说明 示例 用法指南 设计指南 相关主题 重要的 API Hub (XAML) HubSection (XAML) 说明 中心控 ...

  7. python基础---->python的使用(七)

    这里记录python关于io.装饰器和序列化的一些知识.面对大河我无限惭愧,我年华虚度,空有一身疲倦,和所有以梦为马的诗人一样,岁月易逝 一滴不剩. python的一些知识 一.python中的装饰器 ...

  8. jQuery的一些静态方法

    // 该方法被绑定在jQuery对象上,只能通过$.noConflict()调用 noConflict: function( deep ) { // 取消$在window上的绑定,方法是将_$绑定到w ...

  9. Python tkinter 控件更新信息

    下面几个例子关于tkinter界面更新的,简单易懂,分享一下. 例子_1: 代码_1: from tkinter import Tk, Checkbutton, Label from tkinter ...

  10. Android 本地搭建Tomcat服务器供真机测试

    准备工具:tomcat    环境:win7 + JDK1.8 + tomcat 9.0.13(64bit) 准备工具:tomcat    1.tomcat官网下载   https://tomcat. ...