POJ 1964&HDU 1505&HOJ 1644 City Game(最大0,1子矩阵和总结)
最大01子矩阵和,就是一个矩阵的元素不是0就是1,然后求最大的子矩阵,子矩阵里的元素都是相同的。
这个题目,三个oj有不同的要求,hoj的要求是5s,poj是3秒,hdu是1秒。不同的要求就对应不同的难度,不同的逼格。
先看最low的,
HOJ 1664
5秒钟的时间,够长了。我很容易想到可以最大子矩阵和来求解,二者本来就很像,关于最大子矩阵和这个博客里有介绍
最大子矩阵和
这里我们可以把F变成1,把R变成负无穷大,这样求解最大子矩阵和就可以得到答案
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define MAX -1005
int a[1005][1005];
int dp[1005];
int c[1005];
char b[105];
int n,m;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
// getchar();
memset(a,0,sizeof(a));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%s",b);
if(b[0]=='R')
a[i][j]=MAX;
else if(b[0]=='F')
a[i][j]=1;
}
//getchar();
}
int ans=0;
for(int i=1;i<=n;i++)
{
memset(c,0,sizeof(c));
memset(dp,0,sizeof(dp));
for(int k=i;k<=n;k++)
{
for(int j=1;j<=m;j++)
{
c[j]+=a[k][j];
if(dp[j-1]>=0)
dp[j]=dp[j-1]+c[j];
else
dp[j]=c[j];
ans=max(ans,dp[j]);
}
}
}
printf("%d\n",ans*3);
}
return 0;
}
这个代码在poj上也可以过大概是2秒多,差一点就超时。效率是O(n^3).
但是我们怎么能止步于此呢!
接下来这道题目可以用O(n^2)效率解决。首先F是1,R是0。其思想是把1看成一个方块,0自然就没有方块,整个矩阵从第一维开始,然后逐维的加上,就是一排高度不一的矩形。从这一排矩形找到可以形成的最大矩形,就是转换为poj2082 可以看这篇博客
POJ 2082
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define MAX 1000
int a[MAX+5][MAX+5];
int c[MAX+5];
int n,m;
char b[25];
int ans;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
//getchar();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%s",b);
if(b[0]=='F')
a[i][j]=1;
else
a[i][j]=0;
}
//getchar();
}
memset(c,0,sizeof(c));
ans=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(a[i][j]==1)
c[j]++;
else
c[j]=0;
}
int sum=0;
for(int k=1;k<=m;k++)
{
int num=0;
for(int p=k-1;p>=1;p--)
{
if(c[p]>=c[k])
num++;
else
break;
}
for(int q=k+1;q<=m;q++)
{
if(c[q]>=c[k])
num++;
else
break;
}
num++;
num*=c[k];
//cout<<num<<endl;
sum=max(sum,num);
}
ans=max(ans,sum);
//printf("%d\n",ans);
}
printf("%d\n",ans*3);
}
return 0;
}
果然快了1秒多,但是HDU里要求是1秒,但是hdu的数据没有那么大,这个代码交到hdu是可以过的,但是我们怎么可以止步于此,于是我们探究O(n)效率的算法。
其实把这道题目和poj 2082联系在一起就知道O(n)效率怎么写的了,利用单调栈,在求一排高度不等的矩形求形成最大矩形的效率是O(n).
根据递增的单调栈,如果当前栈顶的矩形高度高直接入栈
如果低于栈顶的矩形,那就出栈直到栈顶矩形高度低于当前矩形
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <algorithm>
using namespace std;
#define MAX 1000
int a[MAX+5][MAX+5];
int c[MAX+5];
int n,m;
char b[25];
int ans;
int s[MAX+5];
int l[MAX+5];
int rear;
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
//getchar();
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%s",b);
if(b[0]=='F')
a[i][j]=1;
else
a[i][j]=0;
}
//getchar();
}
memset(c,0,sizeof(c));
ans=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(a[i][j]==1)
c[j]++;
else
c[j]=0;
}
rear=0;
s[rear]=c[1];
l[rear++]=1;
for(int k=2;k<=m;k++)
{
if(c[k]>s[rear-1])
{s[rear]=c[k];l[rear++]=1;}
else
{
int num=0;
while(c[k]<=s[rear-1])
{
num+=l[rear-1];
ans=max(ans,num*s[rear-1]);
rear--;
if(rear==0)
break;
}
s[rear]=c[k];
l[rear++]=num+1;
}
}
int num=0;
while(rear>0)
{
num+=l[rear-1];
ans=max(ans,num*s[rear-1]);
rear--;
}
}
printf("%d\n",ans*3);
}
return 0;
}
哇塞,果然只要360ms。算法是多么神奇和巧妙,效率的差距也是立竿见影
其实这道题目并不难,用O(n^2)效率的算法足可以Ac掉三个OJ里的题目,但是我想做ACM,不应该AC了就满足了,你追求越高,要求越高,你的境界就越高。仔细钻研一个问题,真是很重要的事情。
POJ 1964&HDU 1505&HOJ 1644 City Game(最大0,1子矩阵和总结)的更多相关文章
- HDU 1505 City Game (hdu1506 dp二维加强版)
F - City Game Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submi ...
- POJ 2104&HDU 2665 Kth number(主席树入门+离散化)
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 50247 Accepted: 17101 Ca ...
- poj 1251 poj 1258 hdu 1863 poj 1287 poj 2421 hdu 1233 最小生成树模板题
poj 1251 && hdu 1301 Sample Input 9 //n 结点数A 2 B 12 I 25B 3 C 10 H 40 I 8C 2 D 18 G 55D 1 E ...
- Hdu 5352 MZL's City (多重匹配)
题目链接: Hdu 5352 MZL's City 题目描述: 有n各节点,m个操作.刚开始的时候节点都是相互独立的,一共有三种操作: 1:把所有和x在一个连通块内的未重建过的点全部重建. 2:建立一 ...
- Eight POJ - 1077 HDU - 1043 八数码
Eight POJ - 1077 HDU - 1043 八数码问题.用hash(康托展开)判重 bfs(TLE) #include<cstdio> #include<iostream ...
- HDU 4849 Wow! Such City!陕西邀请赛C(最短路)
HDU 4849 Wow! Such City! 题目链接 题意:依照题目中的公式构造出临接矩阵后.求出1到2 - n最短路%M的最小值 思路:就依据题目中方法构造矩阵,然后写一个dijkstra,利 ...
- POJ 1177/HDU 1828 picture 线段树+离散化+扫描线 轮廓周长计算
求n个图矩形放下来,有的重合有些重合一部分有些没重合,求最后总的不规则图型的轮廓长度. 我的做法是对x进行一遍扫描线,再对y做一遍同样的扫描线,相加即可.因为最后的轮廓必定是由不重合的线段长度组成的, ...
- 【POJ 1964】 City Game
[题目链接] http://poj.org/problem?id=1964 [算法] 记f[i]表示第i行最多向上延伸的行数 然后,对于每一行,我们用单调栈计算出这一行向上延伸的最大矩形面积,取最大值 ...
- HDU 1505 City Game(01矩阵 dp)
Problem Description Bob is a strategy game programming specialist. In his new city building game the ...
随机推荐
- CentOS 6.3 + Subversion + Usvn 搭建版本管理服务器
一. Subversion 简介 Subversion是一个自由,开源的版本控制系统.在Subversion管理下,文件和目录可以超越时空.Subversion将文件存放在中心版本库里.这个版本库很像 ...
- [转]PHP判断字符串是纯英文、纯汉字或汉英混合(GBK)
PHP判断字符串是否为中文(或英文)的方法,除了正则表达式判断和拆分字符判断字符的值是否小于128 外还有一种比较特别的方法. 使用php中的mb_strlen和strlen函数判断 方法比较简单:分 ...
- 我的notepad++
我觉得,做开发的一定要有一个简单,但功能强大的文本编辑器.我比较喜欢notepad++,而且一直使用.准备通过这篇文章分享一下我的notepad++配置. 希望广大notepad++用户,如果有好的配 ...
- zabbix添加Tomcat监控
参靠了网上一些关于zabbix添加Tomcat的监控配置,自己整理了下: 一.服务器端配置1.找到zabbix源码存放路径 # find / -name zabbix_java #/usr/local ...
- 【Android】Android中如何取消调转界面后EditText默认获取聚焦问题
参考资料: https://www.cnblogs.com/dream-cichan/p/aaaa.html http://blog.csdn.net/u013703461/article/detai ...
- [Windows] 解决 COM Surrogate 错误提示
运行环境:Windows 8.1 (64bits) 异常描述:打开 "Windows 照片查看器",试图放大或缩小窗体,弹出 "COM Surrogate” 错误. 解决 ...
- 《Lua程序设计》9.3 以协同程序实现迭代器 学习笔记
例:编写一个迭代器,使其可以遍历某个数组的所有排列组合形式.代码如下: function permgen(a, n) n = n or #a -- 默认n为a的大小 then -- 还需要改变吗? p ...
- leetCode练习题
1.求二叉树的最小深度: public class Solution { public int run(TreeNode root) { if(root==null) return 0; int l ...
- springmvc接收前台(可以是ajax)传来的数组list,map,set等集合,复杂对象集合等图文详解
参考帖子: http://blog.csdn.net/wabiaozia/article/details/50803581 方法参考: { "token":"" ...
- luanet分布式lua框架
luanet最初只是一个网络框架,它简单的封装了一些网络相关接口然后暴露到lua中,让lua可以构建简单的网络应用. 随着我的手游服务器的开发,我发现在C语言中要实现一个简洁易用的RPC调用接口并不容 ...