增量关联规则挖掘—FUP算法
一、背景介绍
关联规则( Association rule)概念最初由Agrawal提出,是数据挖掘的一个重要研究领域, 其目的是发现数据集中有用的频繁模式。
静态关联规则挖掘,是在固定数据集和支持度下,发现数据集中的频繁项集,如 Apriori、FP-Growth、Ecalt等。现实问题中,多数时候,支持度和数据集是会发生变化的,Cheung提出了FUP (Fast UPdate)算法,主要针对数据集增大的情况,FUP算法是第一个增量关联规则挖掘算法。
二、相关定义
数据集DB = {T1,T2,T3,…,Tn},数据集的大小N = |DB|,Ti是其中一条事务,I = {I1,I2,…,Im}是事务的项集,Ti是I的子集。项集 X,Y( X,Y是I的子集) 且 X∩Y = Φ, X=〉Y 为关联规则. X在数据集中出现的次数为 count( X) ,其支持度为: support( X)= count( X) /D ,对于最小支持度 minsup, 若support ( X) ≥minsup,称为频繁项.
增量关联规则挖掘是指数据集变化或者支持度变化时的关联规则挖掘。数据集增加时新增数据集为db,增量数据集的大小d = |db|
频繁项集挖掘的重要性质:频繁项集的非空子集也是频繁项集,非频繁项集的超集也是非频繁项集。
三、算法描述
(1)输入
DB 原数据集;
L k 为 DB 上的 k 项集;
db 新增数据集;
s支持度阈值
(2)输出
DB + db 上的频繁项集 L' k
(3)算法
a)频繁1项集挖掘
扫描 db,获得 db 上的候选集 C; 对原 1 项集在 DB + db的频繁项加到 L'1 中; 扫描 DB,统计 C 在 DB 上的支持度, 频繁项加入到 L'1 中,C中的非频繁项加入到P中,扫描事务数据库时,从所有事物数据中将在P中的项移 除(减少扫描数据的大小),返回频繁1项集L'1。
b)频繁2项集挖掘(同理:频繁多项集挖掘)
对原频繁2项集中的频繁项,若其子集属于L1 – L’1,则直接淘汰,扫描db,统计将L2中剩余的项集在DB+db中任是频繁项集的部分加入到L’2。C2由L’1规约得到,去掉和L2中重复的项,剩下的项集统计在db中支持度,过 滤掉不可能成为频繁项集的部分,扫描DB,将新增的频繁项集加入到L’2中,非频繁项集加入到p中,过滤事务数据中属于p的项。依次挖掘,直到找到所有频繁项集即可。
四、例子
D = 1000 d = 100 s = 3%。I1,12,I3, I4 是事务的项.
I1,12是频繁1项集
I1.supportD = 32 I2.supportD = 31
I3.supporitD= 28
扫描db
I1.supportd = 4 I2.supportd = 1
I3.supportd = 6 I4.supportd = 2
I1.supportUD = 36 >1100*3% I2.supportUD = 32 < 1100 * 3 %
I1加入到L’1中
I3、I4不在L1中,I3.supportd = 6>100*3% I4.supportd = 2<100*3%
I3加入到C1中,I4加入到P中
扫描DB(过滤掉P中的非频繁项集)
I3.supportUD = 34 >1100*3% I3加入到L’1中
输出L’1 ={ I1 ,I3}
增量关联规则挖掘—FUP算法的更多相关文章
- 数据挖掘进阶之关联规则挖掘FP-Growth算法
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规 ...
- 推荐系统第4周--- 基于频繁模式的推荐系统和关联规则挖掘Apriori算法
数据挖掘:关联规则挖掘
- [数据挖掘课程笔记]关联规则挖掘 - Apriori算法
两种度量: 支持度(support) support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count ...
- 关联规则挖掘--Eclat算法
- 关联规则挖掘--Apriori算法
- 数据挖掘系列(1)关联规则挖掘基本概念与Aprior算法
整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一 ...
- 关联规则挖掘之apriori算法
前言: 众所周知,关联规则挖掘是数据挖掘中重要的一部分,如著名的啤酒和尿布的问题.今天要学习的是经典的关联规则挖掘算法--Apriori算法 一.算法的基本原理 由k项频繁集去导出k+1项频繁集. 二 ...
- 关联规则挖掘算法之Apriori算法
Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集. 关于这个算法有一个非常有名的故事:"尿布和啤酒".故事是 ...
- 数据挖掘算法之-关联规则挖掘(Association Rule)
在数据挖掘的知识模式中,关联规则模式是比较重要的一种.关联规则的概念由Agrawal.Imielinski.Swami 提出,是数据中一种简单但很实用的规则.关联规则模式属于描述型模式,发现关联规则的 ...
随机推荐
- C#知识点整理
1.我们在Main()函数中,调用Test()函数,我们管Main()函数称之为调用者, 管Test()函数称之为被调用者. 如果被调用者想要得到调用者的值: 1).传递参数. 2).使用静态字段来模 ...
- 读《高性能javascript》笔记(一)
第一章加载与执行:1,js脚本会阻塞页面渲染,<script>尽可能放到<body>标签的底部2, 合并脚本,页面中的<script>标签越少:HTTP请求带来的额 ...
- android 遇到问题未处理
在gridview 全屏,然后上面增加一个悬浮按钮,这样的布局如何设置 问题点,用相对布局,在代码寻找gridview的id时就报错了
- 打地鼠游戏iOS源码项目
打地鼠游戏源码,游戏是一款多关卡基于cocos2d的iPad打地鼠游戏源码,这也是一款高质量的打地鼠游戏源码,可以拥有逐步上升的关卡的设置,大家可以在关卡时设置一些商业化的模式来盈利的,非常完美的一款 ...
- redis 基础
一 redis数据类型redis支持5种类型的数据类型,它描述如下的:1. 字符串 Redis字符串是字节序列.Redis字符串是二进制安全的,这意味着他们有一个已知的长度没有任何特殊字符终止,所以你 ...
- 【Windows编程】系列第八篇:通用对话框
上一篇我们学习了菜单的基本编程,本篇来了解一下通用对话框的使用.Windows系统之所以是目前最流行的桌面系统,也是因为Windows有一套标准化,统一友好的交互界面,比如菜单.工具栏.状态栏以及各个 ...
- EF optimize the perfermance
参考 Three steps for fast entityframework 6.1 code-first startup performance Managing DbContext ...
- 关于域名系统DNS解析IP地址的一些总结
关于域名系统DNS(Domain Name System) 从域名中解析出IP地址. DNS主要由3部分组成: ① 名称解析器(resolver) ② 域名空间(domain name space) ...
- 【原】CSS实现背景透明,文字不透明,兼容所有浏览器
11.11是公司成立的日子,16岁啦,我呢3岁半,感谢公司给了这样一个平台,让我得以学习和成长,这里祝愿公司发展越来越好~ 进入主题,每年11月11号是光棍节,产生于校园,本来只是一流传于年轻人的娱乐 ...
- 线程同步以及 yield() wait()和notify()、notifyAll()
1.yield() 该方法与sleep()类似,只是不能由用户指定暂停多长时间,并且yield()方法只能让同优先级的线程有执行的机会. 2.wait()和notify().notifyAll() 这 ...