增量关联规则挖掘—FUP算法
一、背景介绍
关联规则( Association rule)概念最初由Agrawal提出,是数据挖掘的一个重要研究领域, 其目的是发现数据集中有用的频繁模式。
静态关联规则挖掘,是在固定数据集和支持度下,发现数据集中的频繁项集,如 Apriori、FP-Growth、Ecalt等。现实问题中,多数时候,支持度和数据集是会发生变化的,Cheung提出了FUP (Fast UPdate)算法,主要针对数据集增大的情况,FUP算法是第一个增量关联规则挖掘算法。
二、相关定义
数据集DB = {T1,T2,T3,…,Tn},数据集的大小N = |DB|,Ti是其中一条事务,I = {I1,I2,…,Im}是事务的项集,Ti是I的子集。项集 X,Y( X,Y是I的子集) 且 X∩Y = Φ, X=〉Y 为关联规则. X在数据集中出现的次数为 count( X) ,其支持度为: support( X)= count( X) /D ,对于最小支持度 minsup, 若support ( X) ≥minsup,称为频繁项.
增量关联规则挖掘是指数据集变化或者支持度变化时的关联规则挖掘。数据集增加时新增数据集为db,增量数据集的大小d = |db|
频繁项集挖掘的重要性质:频繁项集的非空子集也是频繁项集,非频繁项集的超集也是非频繁项集。
三、算法描述
(1)输入
DB 原数据集;
L k 为 DB 上的 k 项集;
db 新增数据集;
s支持度阈值
(2)输出
DB + db 上的频繁项集 L' k
(3)算法
a)频繁1项集挖掘
扫描 db,获得 db 上的候选集 C; 对原 1 项集在 DB + db的频繁项加到 L'1 中; 扫描 DB,统计 C 在 DB 上的支持度, 频繁项加入到 L'1 中,C中的非频繁项加入到P中,扫描事务数据库时,从所有事物数据中将在P中的项移 除(减少扫描数据的大小),返回频繁1项集L'1。
b)频繁2项集挖掘(同理:频繁多项集挖掘)
对原频繁2项集中的频繁项,若其子集属于L1 – L’1,则直接淘汰,扫描db,统计将L2中剩余的项集在DB+db中任是频繁项集的部分加入到L’2。C2由L’1规约得到,去掉和L2中重复的项,剩下的项集统计在db中支持度,过 滤掉不可能成为频繁项集的部分,扫描DB,将新增的频繁项集加入到L’2中,非频繁项集加入到p中,过滤事务数据中属于p的项。依次挖掘,直到找到所有频繁项集即可。
四、例子
D = 1000 d = 100 s = 3%。I1,12,I3, I4 是事务的项.
I1,12是频繁1项集
I1.supportD = 32 I2.supportD = 31
I3.supporitD= 28
扫描db
I1.supportd = 4 I2.supportd = 1
I3.supportd = 6 I4.supportd = 2
I1.supportUD = 36 >1100*3% I2.supportUD = 32 < 1100 * 3 %
I1加入到L’1中
I3、I4不在L1中,I3.supportd = 6>100*3% I4.supportd = 2<100*3%
I3加入到C1中,I4加入到P中
扫描DB(过滤掉P中的非频繁项集)
I3.supportUD = 34 >1100*3% I3加入到L’1中
输出L’1 ={ I1 ,I3}
增量关联规则挖掘—FUP算法的更多相关文章
- 数据挖掘进阶之关联规则挖掘FP-Growth算法
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规 ...
- 推荐系统第4周--- 基于频繁模式的推荐系统和关联规则挖掘Apriori算法
数据挖掘:关联规则挖掘
- [数据挖掘课程笔记]关联规则挖掘 - Apriori算法
两种度量: 支持度(support) support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count ...
- 关联规则挖掘--Eclat算法
- 关联规则挖掘--Apriori算法
- 数据挖掘系列(1)关联规则挖掘基本概念与Aprior算法
整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一 ...
- 关联规则挖掘之apriori算法
前言: 众所周知,关联规则挖掘是数据挖掘中重要的一部分,如著名的啤酒和尿布的问题.今天要学习的是经典的关联规则挖掘算法--Apriori算法 一.算法的基本原理 由k项频繁集去导出k+1项频繁集. 二 ...
- 关联规则挖掘算法之Apriori算法
Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集. 关于这个算法有一个非常有名的故事:"尿布和啤酒".故事是 ...
- 数据挖掘算法之-关联规则挖掘(Association Rule)
在数据挖掘的知识模式中,关联规则模式是比较重要的一种.关联规则的概念由Agrawal.Imielinski.Swami 提出,是数据中一种简单但很实用的规则.关联规则模式属于描述型模式,发现关联规则的 ...
随机推荐
- 分布式集群系统下的高可用session解决方案
目前,为了使web能适应大规模的访问,需要实现应用的集群部署. 而实现集群部署首先要解决session的统一,即需要实现session的共享机制. 目前,在集群系统下实现session统一的有如下几种 ...
- RedHat Linux RHEL6配置本地YUM源
YUM是Yellow dog Updater Modified的简称,起初是由yellow dog这一发行版的开发者Terra Soft研发,用python写成,那时还叫做yup(yellow dog ...
- 如何让Log4net日志文件按每月归成一个文件夹,StaticLogFileName参数的用法
想要让Log4net日志(以下称日志)按每月自动归类为一个文件夹,为此,学习和修改了log4net.config文件.查了资料,重点是以下这些参数: <param name=" ...
- ansible 初探nginx安装
我的配置: /etc/hosts: /etc/ansible/hosts: nglinx安装包: ansible自动化安装nginx: 1.安装ansible. 2.创建目录结构: mkdir -p ...
- Conquer and Divide经典例子之汉诺塔问题
递归是许多经典算法的backbone, 是一种常用的高效的编程策略.简单的几行代码就能把一团遭的问题迎刃而解.这篇博客主要通过解决汉诺塔问题来理解递归的精髓. 汉诺塔问题简介: 在印度,有这么一个古老 ...
- DB监控-Riak集群监控
公司的Riak版本是2.0.4,目前已根据CMDB三级业务部署了十几套集群,大部分是跨机房部署.监控采集分为两个大的维度,第一个维度是单机,也就是 「IP:端口」:第二个维度是集群,也就是所有节点指标 ...
- Node Pm2 配置
系统环境:Centos7 第一步安装NodeJS 建议采用稳定编译过的版本,source code稍麻烦,编译过的直接可用,安装超级简单 下载完成后安装成功 node -v 显示版本号 npm -v ...
- 乌版图 read-only file system
今天在启动虚拟机的时候,运行命令svn up的时候,提示lock,并且read-only file system,这个....我是小白啊,怎么办?前辈在专心写代码,不好打扰,果断找度娘啊 于是乎,折腾 ...
- 【java开发】方法重写和方法重载概述
类的继承 父类-子类 关键字 extends 新建一个父类 public class Person { private String name; private int ...
- java设计模式之观察者模式
观察者模式 观察者模式(有时又被称为发布(publish )-订阅(Subscribe)模式.模型-视图(View)模式.源-收听者(Listener)模式或从属者模式)是软件设计模式的一种.在此种模 ...