Swin Transformer:最佳论文,准确率和性能双佳的视觉Transformer | ICCV 2021
论文提出了经典的Vision Transormer模型Swin Transformer,能够构建层级特征提高任务准确率,而且其计算复杂度经过各种加速设计,能够与输入图片大小成线性关系。从实验结果来看,Swin Transormer在各视觉任务上都有很不错的准确率,而且性能也很高
来源:晓飞的算法工程笔记 公众号
论文: Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Introduction
长期以来,计算机视觉建模一直由卷积神经网络(CNN)主导。从AlexNet在ImageNet中的革命性表现开始,通过更大的规模、更广泛的连接以及更复杂的卷积形式逐级演变出越来越强大的CNN架构。另一方面,自然语言处理(NLP)网络架构的演变则采取了不同的路径,如今最流行的就是Transformer架构。Transformer专为序列建模和转导任务而设计,以使用注意力来建模数据中的长距离关系而著称。
Transformer在语言领域的巨大成功促使研究人员研究其在计算机视觉的适应性,目前也取得了很不错的结果,特别是用于图像分类的ViT以及用于视觉语言联合建模的CLIP。
本文作者尝试扩展Transformer的适用性,将其用作计算机视觉的通用主干,就像Transformer在NLP和CNN在视觉中所做的那样。将Transformer在语言领域的高性能表现转移到视觉领域所面临的主要挑战,主要源自两个领域之间的差异:
- 尺寸。token作为NLP Transformer中的基本元素,其尺寸是固定的,对应段落中的一个单词。但视觉目标的尺寸可能有较大的差异,这也是如物体检测等任务备受关注的问题,通常需要捕获多尺度特征来解决。而在现有的基于Transformer的模型中,token都是固定尺寸的,对应一个单词或固定的图片区域,显然不适用于当前的视觉应用任务。
- 数量级。与文本段落中的单词数量相比,图像中的像素数量要多很多。在许多如语义分割的视觉任务中,需要进行像素级的密集预测。而Transformer在高分辨率图像上的处理是难以进行的,因为自注意力的计算复杂度与图像大小成二次方关系。

为了解决这些问题,论文提出了Swin Transformer,能够构建层级特征图并且计算复杂度与图像大小成线性关系。
基于层级特征图,Swin Transformer模型可以很方便地结合先进的密集预测技术,如特征金字塔网络(FPN)或U-Net。如图1a所示,Swin Transformer从小尺寸的图像块开始,逐渐合并相邻图像块来构建层级特征。线性计算复杂度则是通过只在局部非重叠窗口(图1a红色区域)计算自注意力来实现的。由于窗口大小是固定的,所以复杂度与图像大小成线性关系。
Swin Transformer还有一个关键设计元素,就是在连续的同尺度self-attention层使用移位窗口分区(shifted window partition)。类似于对分组卷积的分组间通信优化,移位窗口能够促进前一层的窗口之间的特征融合,从而显著提高建模能力。常见的基于滑动窗口(sliding window)的自注意力,由于每个query对应的key集不同,所以都要单独计算注意力矩阵然后输出,实现上很低效。而移位窗口由于仅在窗口内进行自注意力计算,同窗口内的query对应的key集相同,key集可在窗口内共享,可直接单次矩阵计算同时完成全部注意力计算然后输出,在实现上十分高效。
Swin Transformer在图像分类、目标检测和语义分割的识别任务上取得了很不错的结果。在速度相似的情况下,准确率显著优于ViT/DeiT和ResNe(X)t模型。在COCO test-dev数据集上达到的58.7 box AP和51.1 mask AP,分别比SOTA高2.7和2.6。在ADE20K val数据集集上获得了 53.5 mIoU,比SOTA高3.2。在ImageNet-1K数据集上达到了87.3%的top-1准确率。
Method

Overall Architecture
Swin Transformer整体架构如图3所示,该图是Tiny版本Swin-T,分为以下几个部分:
- Patch Partition:输入图像的处理跟ViT类似,通过patch splitting模块将输入的RGB图像分割成不重叠的图像块,直接将每个图像块内的RGB值concate起来作为一个token。在实现时,每个图像块的大小为\(4\times 4\),因此每个图像块的特征维度为\(4\times 4\times 3 = 48\)。
- Linear Embedding:随后,Linear Embedding层对这个原始特征进行处理,将其映射到指定维度大小\(C\)。
- Swin Transformer block:在得到图像块token后,连续使用多个包含改进自注意力的Transformer模块(Swin Transformer block)进行特征提取。
- Patch Merging:为了构建层级特征,随着网络变深,通过Patch Merging层减少token的数量。第一个Patch Merging层将每个维度的\(2\times 2\)的相邻图像块特征concate起来,并在得到的\(4C\)维特征上使用Linear Embedding层进行维度映射。这样,token量就减少了\(2\times 2 = 4\)的倍数(相当于两倍下采样)并且映射到指定维度大小\(2C\),最后同样使用Swin Transformer blocks进行特征变换。
Linear Embedding与后续的Swin Transformer blocks一起称为Stage 1,token的数量为\(\frac{H}{4}\times \frac{W}{4}\)。第一个Patch Merging和Swin Transformer blocks称为Stage 2,分辨率保持在\(\frac{H}{8}\times \frac{W}{8}\)。该过程重复两次,分别为Stage 3和Stage 4,输出分辨率分别为\(\frac{H}{16}\times \frac{W}{16}\)和\(\frac{H}{32}\times \frac{W}{32}\)。各Stage共同构建的层级特征,其特征分辨率与典型卷积网络相同,例如VGG和ResNet。因此,Swin Transformer架构可以方便地替换现有方法中的骨干网络,用于各种视觉任务。
Swin Transformer block
Swin Transformer模块将Transformer模块中的多头自注意力(MSA)替换为基于windows或shifted window的多头自注意力,其他层保持不变。如图3b所示,对于连续的Swin Transformer模块,前一个使用基于window的MSA模块,后一个使用基于shifted window的MSA模块,然后都是接一个带GELU非线性激活的两层MLP,每个MSA模块和每个MLP都有LayerNorm(LN)层和一个残差连接。
Shifted Window based Self-Attention
标准的Transformer架构及其在图像分类的应用都进行全局自注意力计算,计算每个token和所有其他token之间的关系。全局自注意力计算的复杂度是token数量的二次方,这显然不适用于许多需要大量token进行密集预测或产生高分辨率图像的视觉问题。
Self-attention in non-overlapped windows
为了高效计算,论文提出仅在局部窗口内计算自注意力,各窗口以不重叠的方式均匀地划分图像。假设每个窗口包含\(M\times M\)个图像块,在包含\(h\times w\)个图像块的特征图上,全局模式和窗口模式的计算复杂度分别为:

复杂度前面的部分应该是Q、K、V和最终输出的生成计算,后面部分是Q和K的矩阵相乘和权值与V的相乘。全局模式的计算复杂度与图像块数量\(hw\)成二次方,而当\(M\)固定时(默认设置为7),窗口模式的计算复杂度则是线性的。所以当\(hw\)很大时,全局自注意力计算通常是难以进行的,而基于窗口的自注意力则是可调整的。
Shifted window partitioning in successive blocks
类似于分组卷积的问题,基于窗口的自注意力缺乏跨窗口的连接,限制了建模能力。为了在保持高效计算的情况下引入跨窗口连接,论文提出了移位窗口分区(shifted window partitioning)方法,在连续的Swin Transformer模块交替使用两种不同分区逻辑。

如图2所示,第一个模块使用从左上角像素开始的常规窗口分区策略,将\(8\times 8\)特征图均匀地划分为4个\(4\times 4\)(M = 4)大小的窗口。然后,下一个模块采用与前一层不同的窗口分区策略,将常规窗口移动\((\lfloor \frac{M}{2}\rfloor, \lfloor \frac{M}{2}\rfloor)\)个像素。
基于移位窗口分区方法,连续的Swin Transformer模块的计算变为:

其中\(\hat{z}^l\)和\(z^l\)表示\(l\)层的(S)WMSA模块和MLP模块的输出特征,W-MSA和SW-MSA 分别表示使用常规窗口分区和移位窗口分区的窗口多头自注意。
移位窗口分区方法增加了上一层中相邻的非重叠窗口之间的联系,这在图像分类、物体检测和语义分割中是十分有效的。
Efficient batch computation for shifted configuration
移位窗口分区会导致窗口数变多,从\((\lfloor \frac{M}{2}\rfloor, \lfloor \frac{M}{2}\rfloor)\)个窗口变为\((\lfloor \frac{h}{M}+1\rfloor, \lfloor \frac{w}{M}+1\rfloor)\)个窗口,而且部分窗口的大小会小于\(M\times M\)。在计算窗口自注意力时,一般会将多个窗口拼接成矩阵进行矩阵计算,要求每个窗口的大小一致。
一个简单的移位窗口分区的兼容做法是将较小的窗口填充到\(M\times M\)的大小,然后在计算注意力时屏蔽掉填充的值。在常规分区中的窗口数量较少时,例如\(2\times 2\),使用这种简单的解决方案增加的计算量是相当大的(\(2\times 2 \to 3\times 3\),增加2.25倍)。

为此,论文提出了一种更高效的批处理计算方法,通过向左上方向循环移位进行小窗口的合并计算,如图4所示。在移位之后,单个窗口可能由几个原本不相邻的子窗口组成,因此需要采用掩码机制将自注意力计算限制在每个子窗口内,掩码机制主要是屏蔽掉计算出来的注意力矩阵。在循环移位后,由于窗口数量与常规窗口分区的数量相同,因此计算量也相当。
Relative position bias
在计算self-attention时,论文参考当前一些研究的做法,在进行相似度计算时为每个head加入相对位置偏置(relative position bias) \(B\in \mathbb{R}^{M^2\times M^2}\),注意区别于常规相对位置编码的做法:

其中\(d\)是Q、K、V特征的维度,\(M^2\)是窗口中的图像块数。由于每个轴方向的相对位置均在\([−M + 1, M −1]\)范围内,论文设置了一个较小尺寸的可学习偏置矩阵\(\hat{B}\in \mathbb{R}^{(2M−1)\times(2M−1)}\)(对应二维相对位置组合数量),然后根据窗口中各位置的相对位置转换得到唯一索引编码,从\(\hat{B}\)取对应的值构成\(B\)矩阵。这样做的目的有两个,降低参数量(\((2M−1)\times(2M−1)\) vs \((M^2\times M^2)\)),同时让相同位置的使用相同偏置。
从实验结果来看,与没有此偏置项或使用绝对位置偏置的对比,相对位置偏置有显著的性能提升。ViT使用了绝对位置偏置,论文也尝试进一步叠加绝对位置偏置,但测试会略微降低性能,因此在实现中未采用它。
当要fine-tuning不同窗口大小的模式时,预训练到的相对位置偏置也可通过bi-cubic interpolation进行转换。
Architecture Variants

论文构建了基础模型Swin-B,跟ViTB/DeiT-B的模型大小和计算复杂度差不多。此外,论文还涉及了Swin-T、Swin-S和Swin-L版本,分别是基础模型的模型大小和计算复杂度的0.25倍、0.5倍和2倍的版本。其中,Swin-T和Swin-S的复杂度分别对标ResNet-50(DeiT-S)和ResNet-101。默认情况下,窗口大小设置为 M = 7。对于所有实验,自注意力计算每个head的特征维度\(d = 32\),每个MLP的扩展层\(α = 4\)。
这些模型变体的架构超参数是:
- Swin-T:C = 96, layer numbers =
- Swin-S:C = 96, layer numbers =
- Swin-B:C = 128, layer numbers =
- Swin-L:C = 192, layer numbers =
其中\(C\)是Stage 1的维度数。
Experiment

直接训练和预训练在Image-1K数据集上的性能对比。

目标检测上对比嵌套多种检测算法和其它主干网络。

语义分割上对比其它SOTA模型。

移位窗口策略性能以及不同的position embedding组合的对比。

不同策略之间的推理性能对比。

Swin Transformer搭配不同自注意力计算方法的性能对比。
Conclusion
论文提出了经典的Vision Transormer模型Swin Transformer,能够构建层级特征提高任务准确率,而且其计算复杂度经过各种加速设计,能够与输入图片大小成线性关系。从实验结果来看,Swin Transormer在各视觉任务上都有很不错的准确率,而且性能也很高。
如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

Swin Transformer:最佳论文,准确率和性能双佳的视觉Transformer | ICCV 2021的更多相关文章
- ICCV2021 | Swin Transformer: 使用移位窗口的分层视觉Transformer
前言 本文解读的论文是ICCV2021中的最佳论文,在短短几个月内,google scholar上有388引用次数,github上有6.1k star. 本文来自公众号CV技术指南的论文分享系 ...
- KDD 2018 | 最佳论文:首个面向Facebook、arXiv网络图类的对抗攻击研究
8 月 19 日至 23 日,数据挖掘顶会 KDD 2018 在英国伦敦举行,昨日大会公布了最佳论文等奖项.最佳论文来自慕尼黑工业大学的研究者,他们提出了针对图深度学习模型的对抗攻击方法,是首个在属性 ...
- InfoQ一波文章:AdaSearch/JAX/TF_Serving/leon.bottou.org/Neural_ODE/NeurIPS_2018最佳论文
和 Nested Partition 有相通之处? 伯克利提出 AdaSearch:一种用于自适应搜索的逐步消除方法 在机器学习领域的诸多任务当中,我们通常希望能够立足预先给定的固定数据集找出问题的答 ...
- AAAI 2021 最佳论文公布
作者:Synced 翻译:仿佛若有光 第三十五届 AAAI 人工智能会议 (AAAI-21) 以虚拟会议的形式拉开帷幕.组委会在开幕式上公布了最佳论文奖和亚军.三篇论文获得了最佳论文奖,三篇被评为 ...
- FPGA 17最佳论文导读 ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.机器学习技术感兴趣的同学加入. 后面陆续写一些关于神经网络加 ...
- NIPS2018最佳论文解读:Neural Ordinary Differential Equations
NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32 雷锋网 AI 科技评论按,不久前,NeurI ...
- USENIX 最佳论文奖:擦除 Windows Azure 存储编码
我们发表了一篇介绍Windows Azure 存储如何用编码方式擦除数据的论文,此论文在 2012 年 6 月的 USENIX 技术年会上荣获最佳论文奖.这是 MicrosoftResearch ...
- ACM TOMM 2017最佳论文:让AI接手繁杂专业的图文排版设计工作
编者按:你是否曾经为如何创作和编辑一篇图文并茂.排版精美的文章而烦恼?或是为缺乏艺术灵感和设计思路而痛苦?AI技术能否在艺术设计中帮助到我们?今天我们为大家介绍的这篇论文,“Automatic Gen ...
- Graph Transformer Networks 论文分享
论文地址:https://arxiv.org/abs/1911.06455 实现代码地址:https://github.com/ seongjunyun/Graph_Transformer_Netwo ...
- ICRA 2019最佳论文公布 李飞飞组的研究《Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks》获得了最佳论文
机器人领域顶级会议 ICRA 2019 正在加拿大蒙特利尔举行(当地时间 5 月 20 日-24 日),刚刚大会公布了最佳论文奖项,来自斯坦福大学李飞飞组的研究<Making Sense of ...
随机推荐
- ruby中的Hash排序
参考: https://blog.csdn.net/xing102172/article/details/9163607 For example: h={'a'=>2, 'c'=>1, ' ...
- ssh秘钥对免密码登陆
准备两台linux服务器 a和b , 在a上使用ssh命令登陆b服务器 , 并且不用 输入密码 1.在a服务器上,比如是root用户 ,进去/root/.ssh目录 ,没有就创建, 就是进入家目录的. ...
- DNS(4) -- dns功能实现-配置正向解析和反向解析以及DNS递归查询示例
目录 1 DNS配置示例 1.1 DNS解析类型 1.2 配置正向解析 1.3 配置反向解析 1.4 DNS递归查询 1.4.1 开启递归查询 1.4.2 关闭递归查询 1 DNS配置示例 1.1 D ...
- 零知识证明: Tornado Cash 项目学习
前言 最近在了解零知识证明方面的内容,这方面的内容确实不好入门也不好掌握,在了解了一些基础的概念以后,决定选择一个应用了零知识证明的项目来进行进一步的学习.最终选择了 Tornado Cash 这个项 ...
- debug技巧之远程调试
一.前言 大家好啊,我是summo,今天给大家分享一下我平时是怎么调试代码的,不是权威也不是教学,就是简单分享一下,如果大家还有更好的调试方式也可以多多交流哦. 当我们的应用发布到线上之后,就不能随意 ...
- SASS 插值语句 #{ }的使用
在之前我们已经使用用 / 来进行计算,但如下情况不一样 例如 p{ font: 16px/30px Arial, Helvetica, sans-serif; } 如果需要使用变量,同时又要确保 / ...
- Android Media Framework - 开篇
前言 Android Media是一块非常庞大的内容,上到APP的书写,中到播放器的实现.封装格式的了解,下到编解码组件的封装.VPU API的了解,每块内容的学习都需要我们下很大的功夫.此外,我们还 ...
- Dockerfile-NGINX镜像制作
1 NGINX镜像制作: 1.1 NGINX-dockerfile FROM centos:7 LABEL maintainer www.chenleilei.net RUN useradd www ...
- itestwork(爱测试) 一站式接口测试&敏捷测试工作站 9.0.1 发布,ui 及Bug fix
(一)itest 简介 itest work (爱测试) 一站式工作站让测试变得简单.敏捷.itest work 包含极简的任务管理,测试管理,缺陷管理,测试环境管理,接口测试,接口Mock 6合1 ...
- if语句嵌套
// if语句的嵌套 // 在if语句的{}中,执行程序中,再次有if语句 /* if(){ if(){ ...