kafka的安装和基本操作
基本概念
简介
Kafka 最初是由 LinkedIn 即领英公司基于 Scala 和 Java 语言开发的分布式消息发布-订阅系统,现已捐献给Apache 软件基金会。其具有高吞吐、低延迟的特性,许多大数据实时流式处理系统比如 Storm、Spark、Flink等都能很好地与之集成。
总的来讲,Kafka 通常具有 3 重角色:
- 存储系统:通常消息队列会把消息持久化到磁盘,防止消息丢失,保证消息可靠性。Kafka 的消息持久化机制和多副本机制使其能够作为通用数据存储系统来使用。
- 消息系统:Kafka 和传统的消息队列比如 RabbitMQ、RocketMQ、ActiveMQ 类似,支持流量削峰、服务解耦、异步通信等核心功能。 ==》 先进先出 ==》 只针对分区,不是全局的
- 流处理平台:Kafka 不仅能够与大多数流式计算框架完美整合,并且自身也提供了一个完整的流式处理库,即 Kafka Streaming。Kafka Streaming 提供了类似 Flink 中的窗口、聚合、变换、连接等功能。
一句话概括:Kafka 是一个分布式的基于发布/订阅模式的消息中间件,在业界主要应用于大数据实时流式计算领域,起解耦合和削峰填谷的作用。
特点
- 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个topic可以分多个partition, 由多个consumer group 对partition进行consume操作。
- 可扩展性:kafka集群支持热扩展
- 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
- 容错性:允许集群中有节点失败(若副本数量为n,则允许n-1个节点失败)
- 高并发:支持数千个客户端同时读写
Kafka在各种应用场景中,起到的作用可以归纳为这么几个术语:削峰填谷,解耦!
在大数据流式计算领域中,kafka主要作为计算系统的前置缓存和输出结果缓存;
安装部署
kafka基于Zookeeper, 因此需要先安装Zookeeper, 详见https://www.cnblogs.com/paopaoT/p/17461562.html
- 上传安装包
- 解压
tar -zxvf kafka_2.11-2.2.2.tgz tar -C /opt/apps/
- 修改配置文件
# 进入配置文件目录
cd kafka_2.12-2.3.1/config
# 编辑配置文件
vi server.properties
# 为依次增长的:0、1、2、3、4,集群中唯一 id
broker.id=0
# 数据存储的⽬录
log.dirs=/opt/data/kafka
# 底层存储的数据(日志)留存时长(默认7天)
log.retention.hours=168
# 底层存储的数据(日志)留存量(默认1G)
log.retention.bytes=1073741824
# 指定zk集群地址
zookeeper.connect=linux01:2181,linux02:2181,linux03:2181
- 环境变量
vi /etc/profile
export KAFKA_HOME=/opt/apps/kafka_2.11-2.2.2
export PATH=$PATH:$KAFKA_HOME/bin
source /etc/profile
- 分发安装包
for i in {2..3}
do
scp -r kafka_2.11-2.2.2 linux0$i:$PWD
done
# 安装包分发后,记得修改config/server.properties中的 配置参数: broker.id
# 注意:还需要分发环境变量
- 启停集群(在各个节点上启动)
bin/kafka-server-start.sh -daemon /opt/apps/kafka_2.11-2.2.2/config/server.properties
# 停止集群
bin/kafka-server-stop.sh
- 一键启停脚本:
#!/bin/bash
case $1 in
"start"){
for i in linux01 linux02 linux03
do
echo ---------- kafka $i 启动 ------------
ssh $i "source /etc/profile; /opt/app/kafka2.4.1/bin/kafka-server-start.sh -daemon /opt/app/kafka2.4.1/config/server.properties"
done
};;
"stop"){
for i in linux01 linux02 linux03
do
echo ---------- kafka $i 停止 ------------
ssh $i "source /etc/profile; /opt/app/kafka2.4.1/bin/kafka-server-stop.sh "
done
};;
esac
基本操作
概述
Kafka 中提供了许多命令行工具(位于$KAFKA_HOME/bin 目录下)用于管理集群的变更。
| 脚本 | 作用 |
|---|---|
| kafka-console-producer.sh | 生产消息 |
| kafka-topics.sh | 管理主题 |
| kafka-server-stop.sh | 关闭Kafka服务 |
| kafka-server-start.sh | 启动Kafka服务 |
| kafka-configs.sh | 配置管理 |
| kafka-consumer-perf-test.sh | 测试消费性能 |
| kafka-producer-perf-test.sh | 测试生产性能 |
| kafka-dump-log.sh | 查看数据日志内容 |
| kafka-preferred-replica-election.sh | 优先副本的选举 |
| kafka-reassign-partitions.sh | 分区重分配 |
管理操作:kafka-topics
创建topic
--bootstrap-server 和 --zookeeper一样的效果 ,新版本建议使用 --bootstrap-server
kafka-topics.sh --bootstrap-server linux01:9092,linux02:9092,linux03:9092 --create --topic test01 --partitions 3 --replication-factor 3
参数解释:
--replication-factor 副本数量
--partitions 分区数量
--topic topic名称
# 本方式,副本的存储位置是系统自动决定的
# 手动指定分配方案:分区数,副本数,存储位置
kafka-topics.sh --create --topic tpc-1 --zookeeper linux01:2181 --replica-assignment 0:1:3,1:2:6
该topic,将有如下partition:(2个分区 3个副本)
partition0 ,所在节点: broker0、broker1、broker3
partition1 ,所在节点: broker1、broker2、broker6
# 查看topic的状态信息
kafka-topics.sh --describe --topic tpc-1 --zookeeper linux01:2181
Topic: tpc-1 PartitionCount: 2 ReplicationFactor: 3 Configs:
Topic: tpc-1 Partition: 0 Leader: 0 Replicas: 0,1,3 Isr: 0,1
Topic: tpc-1 Partition: 1 Leader: 1 Replicas: 1,2,6 Isr: 1,2
查看topic列表
kafka-topics.sh --bootstrap-server linux01:9092,linux02:9092,linux03:9092 --list
kafka-topics.sh --list --zookeeper linux01:2181
__consumer_offsets
tpc-1
查看topic状态信息
kafka-topics.sh --describe --zookeeper linux01:2181 --topic test
Topic: test PartitionCount: 3 ReplicationFactor: 3 Configs:
Topic: test Partition: 0 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1
Topic: test Partition: 1 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: test Partition: 2 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
# topic的分区数量,以及每个分区的副本数量,以及每个副本所在的broker节点,以及每个分区的leader副本所在broker节点,以及每个分区的ISR副本列表;
# ISR: in sync replica ,同步副同步本(当然也包含leader自身,replica.lag.time.max.ms =30000)
# OSR:out of sync replicas 失去同步的副本(该副本上次请求leader同步数据距现在的时间间隔超出配置阈值)
# ISR同步副本列表
# ISR概念:(同步副本)。每个分区的leader会维护一个ISR列表,ISR列表里面就是follower副本的Borker编号,只有跟得上Leader的 follower副本才能加入到 ISR里面
# 这个是通过replica.lag.time.max.ms =30000(默认值)参数配置的,只有ISR里的成员才有被选为 leader 的可能。
踢出ISR和重新加入ISR的条件:
- 踢出ISR的条件: 由replica.lag.time.max.ms =30000决定,如上图;
- 重新加入ISR的条件: OSR副本的LEO(log end offset)追上leader的LEO;
删除topic
bin/kafka-topics.sh --zookeeper linux01:2181 --delete --topic test
# 删除topic,server.properties中需要一个参数处于启用状态: delete.topic.enable = true(默认是true)
# 使用 kafka-topics .sh 脚本删除主题的行为本质上只是在 ZooKeeper 中的 /admin/delete_topics 路径下建一个与待删除主题同名的节点,以标记该主题为待删除的状态。然后由 Kafka控制器异步完成。
增加分区数
kafka-topics.sh --zookeeper linux01:2181 --alter --topic paopao --partitions 3
# Kafka只支持增加分区,不支持减少分区
# 原因是:减少分区,代价太大(数据的转移,日志段拼接合并)
# 如果真的需要实现此功能,则完全可以重新创建一个分区数较小的主题,然后将现有主题中的消息按照既定的逻辑复制过去;
动态配置topic参数(不常用)
# 通过管理命令,可以为已创建的topic增加、修改、删除topic level参数
# 添加/修改 指定topic的配置参数:
kafka-topics.sh --zookeeper linux01:2181 --alter --topic tpc2 --config compression.type=gzip
# --config compression.type=gzip 修改或添加参数配置
# --add-config compression.type=gzip 添加参数配置
# --delete-config compression.type 删除配置参数
生产者:kafka-console-producer
kafka-console-producer.sh --broker-list linux01:9092 --topic test01
>a
>b
>c
>hello
>hi
>hadoop
>hive
顺序轮询(老版本)
顺序分配,消息是均匀的分配给每个 partition,即每个分区存储一次消息,轮询策略是 Kafka Producer 提供的默认策略,如果你不使用指定的轮询策略的话,Kafka 默认会使用顺序轮训策略的方式。
随机分配
实现随机分配的代码只需要两行,如下
List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
return ThreadLocalRandom.current().nextInt(partitions.size());
消费者:kafka-console-consumer
消费者在消费的时候,需要指定要订阅的主题,还可以指定消费的起始偏移量
起始偏移量的指定策略有3中:
- earliest 起始点
- latest 最新
- 指定的offset( 分区号:偏移量) ==》 必须的告诉他是哪个topic 的哪个分区的哪个offset
- 从之前所记录的偏移量开始消费
在命令行中,可以指定从什么地方开始消费
- 加上参数 --from-beginning 指定从最前面开始消费
- 如果不加--from-beginning 就需要分情况讨论了,如果之前记录过消费的位置,那么就从之前消费的位置开始消费,如果说之前没有记录过之前消费的偏移量,那么就从最新的位置开始消费
kafka的topic中的消息,是有序号的(序号叫消息偏移量),而且消息的偏移量是在各个partition中独立维护的,在各个分区内,都是从0开始递增编号!
# 消费消息
kafka-console-consumer.sh --bootstrap-server linux01:9092 --topic test01 --from-beginning
hive
hello
hadoop
# 指定从最前面开始消费
kafka-console-consumer.sh --bootstrap-server linux01:9092 --topic paopao --from-beginning
hadoop
list
hello
kafka
# 不指定他消费的位置的时候,就是从最新的地方开始消费
kafka-console-consumer.sh --bootstrap-server linux01:9092 --topic paopao
# 指定要消费的分区,和要消费的起始offset
# 从指定的offset(需要指定偏移量和分区号)
kafka-console-consumer.sh --bootstrap-server linux01:9092 --topic paopao --offset 2 --partition 0
yy
abc
3333
2222
消费组
- 消费组是kafka为了提高消费并行度的一种机制!
- 在kafka的底层逻辑中,任何一个消费者都有自己所属的组(如果没有指定,系统会自己给你分配一个组id)
- 组和组之间,没有任何关系,大家都可以消费到目标topic的所有数据
- 但是组内的各个消费者,就只能读到自己所分配到的partitions
- KAFKA中的消费组,可以动态增减消费者,而且消费组中的消费者数量发生任意变动,都会重新分配分区消费任务(消费者组在均衡策略)
如何让多个消费者组成一个组: 就是让这些消费者的groupId相同即可!
消费位移的记录
kafka的消费者,可以记录自己所消费到的消息偏移量,记录的这个偏移量就叫(消费位移);
记录这个消费到的位置,作用就在于消费者重启后可以接续上一次消费到位置来继续往后面消费;
消费位移,是组内共享的!!!消费位置记录在一个内置的topic中 ,默认是5s提交一次位移更新。
参数:auto.commit.interval.ms 默认是5s记录一次
# 可以使用特定的工具类 解析内置记录偏移量的topic
kafka-console-consumer.sh --bootstrap-server linux01:9092 --from-beginning --topic __consumer_offsets --formatter "kafka.coordinator.group.GroupMetadataManager\$OffsetsMessageFormatter"
# 通过指定formatter工具类,来对__consumer_offsets主题中的数据进行解析;
[g01,linux01,0]::OffsetAndMetadata(offset=14, leaderEpoch=Optional[0], metadata=, commitTimestamp=1659889851318, expireTimestamp=None)
[g01,linux01,2]::OffsetAndMetadata(offset=17, leaderEpoch=Optional[0], metadata=, commitTimestamp=1659889856319, expireTimestamp=None)
[g01,linux01,1]::OffsetAndMetadata(offset=13, leaderEpoch=Optional[0], metadata=, commitTimestamp=1659889856319, expireTimestamp=None)
[g01,linux01,0]::OffsetAndMetadata(offset=14, leaderEpoch=Optional[0], metadata=, commitTimestamp=1659889856319, expireTimestamp=None)
# 如果需要获取某个特定 consumer-group的消费偏移量信息,则需要计算该消费组的偏移量记录所在分区: Math.abs(groupID.hashCode()) % numPartitions(50)
# 根据组id的hash取值%50 确定具体是将这个组具体每个分区消费到了哪里
# __consumer_offsets的分区数为:50
配置管理 kafka-config
kafka-configs.sh 脚本是专门用来进行动态参数配置操作的,这里的操作是运行状态修改原有的配置,如此可以达到动态变更的目的;一般情况下不会进行动态修改 。
动态配置的参数,会被存储在zookeeper上,因而是持久生效的
可用参数的查阅地址: https://kafka.apache.org/documentation/#configuration
# kafka-configs.sh 脚本包含:变更alter、查看describe 这两种指令类型;
# kafka-configs. sh 支持主题、 broker 、用户和客户端这4个类型的配置。
# kafka-configs.sh 脚本使用 entity-type 参数来指定操作配置的类型,并且使 entity-name参数来指定操作配置的名称。
# 比如查看topic的配置可以按如下方式执行:
kafka-configs.sh --zookeeper linux01:2181 --describe --entity-type topics --entity-name paopao
# 查看broker的动态配置可以按如下方式执行:
kafka-configs.sh --describe --entity-type brokers --entity-name 0 --zookeeper linux01:2181
entity-type和entity-name的对应关系

# 示例:添加topic级别参数
kafka-configs.sh --zookeeper linux01:2181 --alter --entity-type topics --entity-name paopao --add-config cleanup.policy=compact,max.message.bytes=10000
# 示例:添加broker参数
kafka-configs.sh --entity-type brokers --entity-name 0 --alter --add-config log.flush.interval.ms=1000 --bootstrap-server linux01:9092,linux02:9092,linux03:9092
动态配置topic参数
通过管理命令,可以为已创建的topic增加、修改、删除topic level参数
添加/修改 指定topic的配置参数:
kafka-topics.sh --topic paopao --alter --config compression.type=gzip --zookeeper linux01:2181
# 如果利用 kafka-configs.sh 脚本来对topic、producer、consumer、broker等进行参数动态
# 添加、修改配置参数
kafka-configs.sh --zookeeper linux01:2181 --entity-type topics --entity-name paopao --alter --add-config compression.type=gzip
# 删除配置参数
kafka-configs.sh --zookeeper linux01:2181 --entity-type topics --entity-name paopao --alter --delete-config compression.type
kafka的安装和基本操作的更多相关文章
- Kafka的安装和部署及测试
1.简介 大数据分析处理平台包括数据的接入,数据的存储,数据的处理,以及后面的展示或者应用.今天我们连说一下数据的接入,数据的接入目前比较普遍的是采用kafka将前面的数据通过消息的方式,以数据流的形 ...
- Linux下Kafka单机安装配置方法(图文)
Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计.这个独特的设计是什么样的呢 介绍 Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了 ...
- kafka的安装以及基本用法
kafka的安装 kafka依赖于ZooKeeper,所以在运行kafka之前需要先部署ZooKeeper集群,ZooKeeper集群部署方式分为两种,一种是单独部署(推荐),另外一种是使用kafka ...
- kafka manager安装配置和使用
kafka manager安装配置和使用 .安装yum源 curl https://bintray.com/sbt/rpm/rpm | sudo tee /etc/yum.repos.d/bintra ...
- kafka 的安装部署
Kafka 的简介: Kafka 是一款分布式消息发布和订阅系统,具有高性能.高吞吐量的特点而被广泛应用与大数据传输场景.它是由 LinkedIn 公司开发,使用 Scala 语言编写,之后成为 Ap ...
- Kafka学习之路 (四)Kafka的安装
一.下载 下载地址: http://kafka.apache.org/downloads.html http://mirrors.hust.edu.cn/apache/ 二.安装前提(zookeepe ...
- Linux系统下MongoDB的简单安装与基本操作
这篇文章主要介绍了Linux系统下MongoDB的简单安装与基本操作,需要的朋友可以参考下 Mongo DB ,是目前在IT行业非常流行的一种非关系型数据库(NoSql),其灵活的数据存储方式,备 ...
- centos php Zookeeper kafka扩展安装
如题,系统架构升级引入消息机制,php 安装还是挺麻烦的,网上各种文章有的东拼西凑这里记录下来做个备忘,有需要的同学可以自行参考安装亲测可行 1 zookeeper扩展安装 1.安装zookeeper ...
- elk系列1之入门安装与基本操作【转】
preface 我们每天都要查看服务器的日志,一方面是为了开发的同事翻找日志,另一方面是巡检服务器查看日志,而随着服务器数量以及越来越多的业务上线,日志越来越多,人肉运维相当痛苦了,此时,参考现在非常 ...
- Linux下Kafka单机安装配置方法
Kafka是一个分布式的.可分区的.可复制的消息系统.它提供了普通消息系统的功能,但具有自己独特的设计.这个独特的设计是什么样的呢? 首先让我们看几个基本的消息系统术语: •Kafka将消息以topi ...
随机推荐
- JVM Dump分析
Thread Dump介绍 Thread Dump是非常有用的诊断 Java应用问题的工具.每一个 Java虚拟机都有及时生成所有线程在某一点状态的 thread-dump的能力,虽然各个 Java虚 ...
- vue双向监听proxy
console.log('判断页面是否有滚动条', this.hasScrollbar) const that = this that.count = 0 // 计数 that.scrollProxy ...
- 免费Midjourney AI绘画Prompt提示词平台合集
Midjourney AI绘图最关键的地方在于Prompt提示词写的好,一个好的提示词可以让AI模型创造出更优质的绘图,以下是8个免费的Midjourney Prompt提示词辅助平台. 编辑切换 ...
- rocketmq-spring : 实战与源码解析一网打尽
RocketMQ 是大家耳熟能详的消息队列,开源项目 rocketmq-spring 可以帮助开发者在 Spring Boot 项目中快速整合 RocketMQ. 这篇文章会介绍 Spring Boo ...
- 快速使用ChatGpt Web Server
快速使用ChatGpt Web Server ChatGpt Web Server是使用Blazor Server模式部署的一个服务,所有的逻辑和代码执行都会在服务器执行,然后通过SignalR传输到 ...
- 图与网络分析—R实现(四)
三 最短路问题 最短路问题(short-path problem)是图论理论的一个经典问题.寻找最短路径就是在指定网络中两结点间找一条距离最小的路.最短路不仅仅指一般地理意义上的距离最短,还可以引申到 ...
- LeeCode 二叉树问题(二)
二叉树的构建 LeeCode 106: 从中序遍历与后续遍历序列构造二叉树 题目描述 给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, posto ...
- day12:闭包函数&匿名函数(lambda)
闭包函数 闭包函数的定义: 如果内函数使用了外函数的局部变量并且外函数把内函数返回出来的过程 叫做闭包里面的内函数是闭包函数 一个简单的闭包函数示例: def songyunjie_family(): ...
- The first week match's mistake
比赛中的补题中的一些错误 P8506 标题计数(https://www.luogu.com.cn/problem/P8506) 第一眼下去,嗯..贪了,只读到一个'#'后边跟一个空格就+1,结果wa几 ...
- SqlServer查看表结构
SELECT CASE WHEN col.colorder = 1 THEN obj.name ELSE '' END AS 表名 ,CASE WHEN col.colorder=1 then isn ...