2023 ICPC网络赛第一场(A,D,J,L)

A Qualifiers Ranking Rules

先把两场比赛的学校排名处理出来,然后两场比赛的同位次进行合并即可

#include <bits/stdc++.h>

using namespace std;
using i64 = long long; int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); int n, m;
cin >> n >> m;
vector<string> str1, str2,ans;
map<string, bool> vis1, vis2, vis;
string s; for (int i = 0; i < n; i ++) {
cin >> s;
if (vis1[s]) continue;
str1.emplace_back(s);
vis1[s] = true;
}
for (int i = 0; i < m; i ++) {
cin >> s;
if (vis2[s]) continue;
str2.emplace_back(s);
vis2[s] = true;
} n = str1.size(), m = str2.size();
for (int i = 0; i < max(n,m); i ++) {
if (i < n && !vis[str1[i]]) {
ans.emplace_back(str1[i]);
vis[str1[i]] = true;
}
if (i < m && !vis[str2[i]]) {
ans.emplace_back(str2[i]);
vis[str2[i]] = true;
}
} for (auto i : ans)
cout << i << '\n'; return 0;
}

D Transitivity

如果题目给的所有的团都是完全图,那么就要合并两个最小的团,答案就是这两个团的点数的乘积,否则就要把所有的团都补成完全图,bfs或者并查集即可

#include <bits/stdc++.h>
#define debug(a) cout<<#a<<"="<<a<<'\n'; using namespace std;
using i64 = long long; typedef pair<i64, i64> PII; int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); int n, m;
cin >> n >> m;
vector g(n + 1, vector<int>());
for (int i = 0, x, y; i < m; i ++) {
cin >> x >> y;
g[x].push_back(y);
g[y].push_back(x);
} vector<bool> vis(n + 1);
vector<i64> ans; auto bfs = [&](int i) -> pair<i64, i64> {
queue<int> Q;
Q.push(i);
int edge = 0, node = 0;
while (Q.size()) {
auto v = Q.front();
Q.pop(); if(vis[v]) continue;
vis[v] = true;
node ++; for (auto i : g[v]) {
if (vis[i]) continue;
Q.push(i);
edge ++;
}
} return {node, edge};
}; bool is_Tuan = true;
i64 res = 0;
for (int i = 1; i <= n; i ++) {
if (vis[i]) continue;
auto [num, Edge] = bfs(i);
if (Edge != num * (num - 1) / 2) {
is_Tuan = false;
res += num * (num - 1) / 2 - Edge;
}
ans.push_back(num);
} if (!is_Tuan) {
cout << res << '\n';
} else {
sort(ans.begin(), ans.end());
cout << ans[0] * ans[1] << '\n';
} return 0;
}

J Minimum Manhattan Distance

题意是求在\(C_2\)上取一点到\(C_1\)任意一点的最小期望曼哈顿距离.

由于题目要求是最小期望曼哈顿距离,所以可以等价于看做就到\(C_1\)圆心,为了方便计算,可以把\(C_2\)的圆心看成坐标轴原点,\(C_1\)的圆心通过对称变换到第一象限,设\(\{x_0,y_0\}\)为答案点,则有\(\begin{cases} x_0 = x_2 + r_2\cos\theta \\ y_0 = y_2+r_2\sin \theta\end{cases}\),答案为\(|x_1-x_0|+|y_1-y_0|\),

且题目规定\(\forall x_i \in C_1 \neq \forall x_j \in C_2,\forall y_i \in C_1 \neq \forall y_j\in C_2,\),所以当\(C_1\)在第一象限时,总有\(x_1>x_0,y_1>y_0\),所以绝对值可拆,然后用三角函数计算一下,可得出当\(\theta = \frac{\pi}{4}\)时有最小值\(x+y-\sqrt{2}\times r_2\).

#include<bits/stdc++.h>

using i64 = long long;

using namespace std;

typedef pair<i64, i64> PII;

int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr); auto get = [&](double x1,double y1,double x2,double y2){
return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}; int T;
cin >> T;
while(T--){
double xa,ya,xb,yb,xc,yc,xd,yd;
cin >> xa >> ya >> xb >> yb >> xc >> yc >> xd >> yd;
double r2 = get(xc,yc,xd,yd) / 2;
double x1 = (xa + xb) / 2, y1 = (ya + yb) / 2;
double x2 = (xc + xd) / 2, y2 = (yc + yd) / 2;
double ans = fabs(x1 - x2) + fabs(y1 - y2) - r2 * sqrt(2) ;
printf("%.10lf\n",ans);
} return 0;
}

L KaChang!

签到题,题目规定了\(k\geq 2\),所以答案为\(\max(2,\lceil\frac{T}{\max\limits_{i=1}^{n}a_i}\rceil)\)

#include <bits/stdc++.h>
#define debug(a) cout<<#a<<"="<<a<<'\n'; using namespace std;
using i64 = long long; typedef pair<i64, i64> PII; int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr); i64 n, k;
cin >> n >> k;
i64 ma = 0, x;
for(int i = 0;i < n;i ++){
cin >> x;
ma = max(ma, x);
} cout << max(2ll, (k + ma - 1) / k) << '\n'; return 0;
}

2023 ICPC网络赛第一场(A,D,J,L)的更多相关文章

  1. 2021ICPC网络赛第一场部分题解-The 2021 ICPC Asia Regionals Online Contest (I)

    写在前面 本来应该6题的,结果不知道哪个铸币发了H的clar,当即把我们的思路转向三维几何上.当时我们还在想这三维计算几何的正确率有点太高了还在感叹ICPC选手的含金量,直到赛后我才知道这H题的铸币出 ...

  2. Contest1585 - 2018-2019赛季多校联合新生训练赛第一场(部分题解)

    Contest1585 - 2018-2019赛季多校联合新生训练赛第一场 C 10187 查找特定的合数 D 10188 传话游戏 H 10192 扫雷游戏 C 传送门 题干: 题目描述 自然数中除 ...

  3. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  4. HDU6578 2019HDU多校训练赛第一场 1001 (dp)

    HDU6578 2019HDU多校训练赛第一场 1001 (dp) 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6578 题意: 你有n个空需要去填,有 ...

  5. HDU6579 2019HDU多校训练赛第一场1002 (线性基)

    HDU6579 2019HDU多校训练赛第一场1002 (线性基) 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6579 题意: 两种操作 1.在序列末 ...

  6. 2020ICPC·小米 网络选拔赛第一场

    2020ICPC·小米 网络选拔赛第一场 C-Smart Browser #include <string> #include <iostream> std::string s ...

  7. Ryuji doesn't want to study 2018徐州icpc网络赛 树状数组

    Ryuji is not a good student, and he doesn't want to study. But there are n books he should learn, ea ...

  8. 【2018ACM/ICPC网络赛】沈阳赛区

    这次网络赛没有打.生病了去医院了..尴尬.晚上回来才看了题补简单题. K  Supreme Number 题目链接:https://nanti.jisuanke.com/t/31452 题意:输入一个 ...

  9. 2015 多校赛 第一场 1001 (hdu 5288)

    Description OO has got a array A of size n ,defined a function f(l,r) represent the number of i (l&l ...

  10. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

随机推荐

  1. git 有用配置汇总

    背景 git config的不同级别,每一个级别覆盖上一级别的配置,所以.git/config的配置变量会覆盖/etc/gitconfig中的配置变量 git config --system #为整个 ...

  2. 处理 3d 视频的简单理论基础

    背景 公司产品需要满足一些带有3d功能的应用场景,需要需要懂得如何处理3d信号.之前在调试以前产品的时候,发现处理3d信号的时候,是由2个画面叠加起来的. 导言 3D视频(或3D信号)为什么是两个画面 ...

  3. js脚本化css

    脚本化CSS 我们刚讲过如何获取和设置行内样式的值,但是我们开发不会所有样式都写在行内,同时js没法获取内嵌样式表和外部样式表中的值. 事实上DOM提供了可靠的API,得到计算后的样式. 1. 获取计 ...

  4. 基于附带Attention机制的seq2seq模型架构实现英译法的案例

    模型架构 先上图 我们这里选用GRU来实现该任务,因此上图的十个方框框都是GRU块,如第二张图,放第一张图主要是强调编码器的输出是作用在解码器每一次输入的观点,具体的详细流程图将在代码实现部分给出. ...

  5. helloworld - 程序员的第一个社区终于来了

    helloworld - 程序员的第一个社区终于来了 csdn事件 CSDN旗下的GitCode最近因为一种极其不道德的行为引起了开发者的广泛愤怒和抗议.CSDN在没有通知或征求开发者同意的情况下,悄 ...

  6. debian11 简单搭建go环境

    简单环境,目前仅支持单版本go,后续可以考虑直接把go环境放到docker中或podman中,这样每个容器都是一套go版本. 新建文件夹目录 # 我直接用的root账户 cd /root mkdir ...

  7. Python pip 切换为国内镜像源

    参考文章:https://codeplayer.vip/p/j7tmc [windows] 备份记录指令:(永久全局设置pypi国内镜像源地址) 1 pip config --global set g ...

  8. WOE编码与IV值

    参考: WOE与IV值浅谈 机器学习-变量筛选之IV值和WOE 0. Introduction WOE (weight of evidence): 证据权重 IV (information value ...

  9. Solo 开发者周刊 (第8期):Claude公司再度上新产品,成交额将超73亿美元

    这里会整合 Solo 社区每周推广内容.产品模块或活动投稿,每周五发布.在这期周刊中,我们将深入探讨开源软件产品的开发旅程,分享来自一线独立开发者的经验和见解.本杂志开源,欢迎投稿. 好文推荐 Cla ...

  10. MDI子窗口+事件与委托的一个例程

    1首先,新建WinForm的.NetFramWork的工程并添加2个Form: 2设置 Form1为MDI主窗口: [属性]-- 将以上属性改为 True; 另外,也可以采用代码形式: this.Is ...