论文解读(BERT-DAAT)《Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis》
论文信息
论文标题:Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis
论文作者:
论文来源:2020 ACL
论文地址:download
论文代码:download
视屏讲解:click
1 介绍

2 问题定义
在跨域情绪分析任务中,给出了两个域 $D_{s}$ 和 $D_{t}$,它们分别表示源域和目标域。在源域中,$D_{s}^{l}=\left\{x_{s}^{i}, y_{s}^{i}\right\}_{i=1}^{N_{s}^{l}}$ 是 $N_{s}^{l}$ 标记的源域例子,其中 $x_{s}^{i}$ 表示一个句子,$y_{s}^{i}$ 是对应的标签。在源域中也有 $N_{s}^{u}$ 个未标记的数据 $D_{s}^{u}=\left\{x_{s}^{i}\right\}_{i=1+N_{s}^{l}}^{N_{s}^{l}+N_{s}^{u}}$。在目标域中,有一组未标记的数据 $D_{t}=\left\{x_{t}^{i}\right\}_{i=1}^{N_{t}}$,其中 $N_{t}$ 为未标记数据的数量。跨域情绪分析要求我们学习一个基于标记源域数据训练的鲁棒分类器来预测目标域中未标记句子的标签。
2 方法
2.1 BERT Post-training
2.1.1 域区分任务
本文用域区分任务(DDT)来替换 NSP 任务:50% 的时间句子 A 和句子 B 都是从目标域评论中随机抽取的,我们将其标记为 TargetDomain。50% 的时间句子 A 和句子 B 来自目标域和另一个域,其标签为MixDomain。
我们在合并表示上添加一个输出层,并使正确标签的可能性最大化。领域区分预训练使BERT能够提取出不同领域的特定特征,增强了下游的对抗性训练,有利于跨域情绪分析。
2.1.2 目标域 MLM
为了注入目标领域的知识,本文利用掩蔽语言模型(MLM),它需要预测句子中随机掩蔽的单词。在跨域情绪分析中,在目标域中没有标记数据,只有大量的未标记数据来进行 MLM 训练 BERT。具体来说,本文用 [MASK] 随机替换 15% 的 Token,并进行 mask token 的预测。
Note:来自其他域的句子将是带来域偏差的噪声。因此,当域区分任务标签是 MixDomain 时,只掩码目标域句子中的 Token。
2.2 对抗训练
BERT Post-training 注入目标领域的知识,并为 BERT 带来了对领域的意识。基于 BERT Post-training,现在可以利用对抗训练放弃提炼的域特定特征来导出域不变特征。具体来说,设计了一个情绪分类器和一个域鉴别器来处理特殊分类嵌入 [CLS] 的隐藏状态 $h_{[CLS]}$。
2.2.1 情绪分类器
分类器:
$y_{s}=\operatorname{softmax}\left(W_{s} h_{[C L S]}+b_{s}\right)$
2.2.2 域鉴别器
标准的 DANN:
$d=\operatorname{softmax}\left(W_{d} \hat{h}_{[C L S]}+b_{d}\right)$
$L_{d o m}=-\frac{1}{N_{s}+N_{t}} \sum_{i}^{N_{s}+N_{t}} \sum_{j}^{K} \hat{d}^{i}(j) \log d^{i}(j)$
$\begin{array}{c}Q_{\lambda}(x)=x, \\\frac{\partial Q_{\lambda}(x)}{\partial x}=-\lambda I .\end{array}$
2.3 训练目标
完整的训练目标:
$L_{\text {total }}=L_{\text {sen }}+L_{\text {dom }}$
3 实验结果
分类结果

A-distance

消融实验


论文解读(BERT-DAAT)《Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis》的更多相关文章
- [cross domain] four approachs to cross domain in javascript
four approachs can cross domain in javascript 1.jsonp 2.document.domain(only in frame and they have ...
- 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》
论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...
- 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》
论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...
- 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》
论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...
- 论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》
论文信息 论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation论文作者:Guoqiang Wei, Cuil ...
- BERT论文解读
本文尽量贴合BERT的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并 ...
- bert系列二:《BERT》论文解读
论文<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding> 以下陆续介绍ber ...
- CVPR2020论文解读:三维语义分割3D Semantic Segmentation
CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation for 3 ...
- 图像分类:CVPR2020论文解读
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...
- 人工智能论文解读精选 | PRGC:一种新的联合关系抽取模型
NLP论文解读 原创•作者 | 小欣 论文标题:PRGC: Potential Relation and Global Correspondence Based Joint Relational ...
随机推荐
- shell执行一个程序过程
1:shell调用执行程序或脚本 2:unix内核启动一个新的进程,在该进程中执行所指定的程序. 3:如果是编译型程序,内核成执行,如果无法执行指定的程序,返回"not executable ...
- 深度学习-09(目标检测:Object Detection)
文章目录 目标检测(Object Detection) 一 .基本概念 1. 什么是目标检测 2. 目标检测的核心问题 3. 目标检测算法分类 4. 目标检测应用 目标检测原理 1.候选区域产生 1 ...
- Centos7.x 使用 selenium + python + jenkins 做UI自动化
一.基础环境准备 1.Chrome + Chrome Driver https://www.cnblogs.com/TSmagic/p/15671533.html(此篇文章已经介绍) 2.Seleni ...
- .Net开发的音频分离桌面应用,可用于提取背景音乐
背景音乐对于视频来说是非常重要的,制作视频的人来说,听到一些符合自己视频的背景音乐,又找不到背景音乐的源音乐,这时候就需要有软件帮助提取背景音乐了. 项目简介 这是基于C#开发的UI界面,支持中文等多 ...
- 【C#】图片上传并根据长宽大小进行正方形、长方形及等比缩放。
#region 正方型裁剪并缩放 /// <summary> /// 正方型裁剪 /// 以图片中心为轴心,截取正方型,然后等比缩放 /// 用于头像处理 /// </summary ...
- selenium 执行js脚本
使用 selenium 直接在当前页面中进行js交互 使用selenium 执行 Js 脚本 要使用 js 首先要知道 js 怎么用,现在举个简单得例子,就用12306举例子, 它的首页日期选择框是只 ...
- 2022-08-19:以下go语言代码输出什么?A:equal;B:not equal;C:不确定。 package main import ( “fmt“ “reflect“ )
2022-08-19:以下go语言代码输出什么?A:equal:B:not equal:C:不确定. package main import ( "fmt" "refle ...
- 2022-07-07:原本数组中都是大于0、小于等于k的数字,是一个单调不减的数组, 其中可能有相等的数字,总体趋势是递增的。 但是其中有些位置的数被替换成了0,我们需要求出所有的把0替换的方案数量:
2022-07-07:原本数组中都是大于0.小于等于k的数字,是一个单调不减的数组, 其中可能有相等的数字,总体趋势是递增的. 但是其中有些位置的数被替换成了0,我们需要求出所有的把0替换的方案数量: ...
- 2022-01-01:给定int[][] meetings,比如 { {66, 70} 0号会议截止时间66,获得收益70 {25, 90} 1号会议截止时间25,获得收益90
2022-01-01:给定int[][] meetings,比如 { {66, 70} 0号会议截止时间66,获得收益70 {25, 90} 1号会议截止时间25,获得收益90 {50, 30} 2号 ...
- PictureBox保存图片照片到数据库
Private Sub PAPHOTO_SAVE() Try If TxtPictureURL.Text.ToString <> "" Then Dim SQL_Str ...