论文信息

论文标题:Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis
论文作者:
论文来源:2020 ACL
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  

2 问题定义

  在跨域情绪分析任务中,给出了两个域 $D_{s}$ 和 $D_{t}$,它们分别表示源域和目标域。在源域中,$D_{s}^{l}=\left\{x_{s}^{i}, y_{s}^{i}\right\}_{i=1}^{N_{s}^{l}}$ 是 $N_{s}^{l}$ 标记的源域例子,其中 $x_{s}^{i}$ 表示一个句子,$y_{s}^{i}$ 是对应的标签。在源域中也有 $N_{s}^{u}$ 个未标记的数据 $D_{s}^{u}=\left\{x_{s}^{i}\right\}_{i=1+N_{s}^{l}}^{N_{s}^{l}+N_{s}^{u}}$。在目标域中,有一组未标记的数据 $D_{t}=\left\{x_{t}^{i}\right\}_{i=1}^{N_{t}}$,其中 $N_{t}$ 为未标记数据的数量。跨域情绪分析要求我们学习一个基于标记源域数据训练的鲁棒分类器来预测目标域中未标记句子的标签。

2 方法

2.1 BERT Post-training

2.1.1 域区分任务

  本文用域区分任务(DDT)来替换 NSP 任务:50% 的时间句子 A 和句子 B 都是从目标域评论中随机抽取的,我们将其标记为 TargetDomain。50% 的时间句子 A 和句子 B 来自目标域和另一个域,其标签为MixDomain。

    Input = [CLS] The mouse is smooth and great [SEP] The screen is plain [SEP]
    Label = TargetDomain
    Input = [CLS] This book is boring [SEP] The system of the laptop is stable [SEP]
    Label = MixDomain

  我们在合并表示上添加一个输出层,并使正确标签的可能性最大化。领域区分预训练使BERT能够提取出不同领域的特定特征,增强了下游的对抗性训练,有利于跨域情绪分析。

2.1.2 目标域 MLM

  为了注入目标领域的知识,本文利用掩蔽语言模型(MLM),它需要预测句子中随机掩蔽的单词。在跨域情绪分析中,在目标域中没有标记数据,只有大量的未标记数据来进行 MLM 训练 BERT。具体来说,本文用 [MASK] 随机替换 15% 的 Token,并进行 mask token 的预测。

  Note:来自其他域的句子将是带来域偏差的噪声。因此,当域区分任务标签是 MixDomain 时,只掩码目标域句子中的 Token。

2.2 对抗训练

  BERT Post-training 注入目标领域的知识,并为 BERT 带来了对领域的意识。基于 BERT Post-training,现在可以利用对抗训练放弃提炼的域特定特征来导出域不变特征。具体来说,设计了一个情绪分类器和一个域鉴别器来处理特殊分类嵌入 [CLS] 的隐藏状态 $h_{[CLS]}$。

2.2.1 情绪分类器

  分类器:

    $y_{s}=\operatorname{softmax}\left(W_{s} h_{[C L S]}+b_{s}\right)$

  分类交叉熵损失:
    $L_{s e n}=-\frac{1}{N_{s}^{l}} \sum_{i=1}^{N_{s}^{l}} \sum_{j=1}^{K} \hat{y}_{s}^{i}(j) \log y_{s}^{i}(j)$

2.2.2 域鉴别器

  标准的 DANN:

    $d=\operatorname{softmax}\left(W_{d} \hat{h}_{[C L S]}+b_{d}\right)$

    $L_{d o m}=-\frac{1}{N_{s}+N_{t}} \sum_{i}^{N_{s}+N_{t}} \sum_{j}^{K} \hat{d}^{i}(j) \log d^{i}(j)$

    $\begin{array}{c}Q_{\lambda}(x)=x, \\\frac{\partial Q_{\lambda}(x)}{\partial x}=-\lambda I .\end{array}$

2.3 训练目标

  完整的训练目标:

    $L_{\text {total }}=L_{\text {sen }}+L_{\text {dom }}$

3 实验结果

分类结果

  

A-distance

  

消融实验

  

  

论文解读(BERT-DAAT)《Adversarial and Domain-Aware BERT for Cross-Domain Sentiment Analysis》的更多相关文章

  1. [cross domain] four approachs to cross domain in javascript

    four approachs can cross domain in javascript 1.jsonp 2.document.domain(only in frame and they have ...

  2. 论文解读(CDCL)《Cross-domain Contrastive Learning for Unsupervised Domain Adaptation》

    论文信息 论文标题:Cross-domain Contrastive Learning for Unsupervised Domain Adaptation论文作者:Rui Wang, Zuxuan ...

  3. 论文解读(CDTrans)《CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation》

    论文信息 论文标题:CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation论文作者:Tongkun Xu, Weihu ...

  4. 论文解读(CAN)《Contrastive Adaptation Network for Unsupervised Domain Adaptation》

    论文信息 论文标题:Contrastive Adaptation Network for Unsupervised Domain Adaptation论文作者:Guoliang Kang, Lu Ji ...

  5. 论文解读(ToAlign)《ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation》

    论文信息 论文标题:ToAlign: Task-oriented Alignment for Unsupervised Domain Adaptation论文作者:Guoqiang Wei, Cuil ...

  6. BERT论文解读

    本文尽量贴合BERT的原论文,但考虑到要易于理解,所以并非逐句翻译,而是根据笔者的个人理解进行翻译,其中有一些论文没有解释清楚或者笔者未能深入理解的地方,都有放出原文,如有不当之处,请各位多多包含,并 ...

  7. bert系列二:《BERT》论文解读

    论文<BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding> 以下陆续介绍ber ...

  8. CVPR2020论文解读:三维语义分割3D Semantic Segmentation

    CVPR2020论文解读:三维语义分割3D Semantic Segmentation xMUDA: Cross-Modal Unsupervised Domain Adaptation  for 3 ...

  9. 图像分类:CVPR2020论文解读

    图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...

  10. 人工智能论文解读精选 | PRGC:一种新的联合关系抽取模型

    NLP论文解读 原创•作者 | 小欣   论文标题:PRGC: Potential Relation and Global Correspondence Based Joint Relational ...

随机推荐

  1. [OpenCV-Python] 7 把鼠标当画笔

    文章目录 OpenCV-Python: II OpenCV 中的 Gui 特性 7 把鼠标当画笔 7.1 简单演示 7.2 高级一点的示例 OpenCV-Python: II OpenCV 中的 Gu ...

  2. PM系统成本科目挂接教程-如何查手册和看帮助文档

    如果这么简单的问题都无法入门只能说回炉重造吧孩子. ---by SheZQ 正文 成本科目挂接作为PM系统最基本的取数依据,数据汇总的根本,是必须要会的技能.如果没有挂接,就会出现空值或者0值. 摘自 ...

  3. NFS共享存储实战

    NFS共享存储实战 目录 NFS共享存储实战 NFS基本概述 为什么要使用共享存储 企业中文件服务器(共享存储) NFS应用场景 集群没有共享存储时 集群有共享存储 NFS实现原理 NFS的函数 本地 ...

  4. 大米cms爆破后台及支付逻辑漏洞

    又找到个网站挖洞,我来康康. 大米手机是个什么鬼手机??看一下吧 这个支付页面好熟悉,可能存在支付逻辑漏洞,咱们用burp改个包看看. 先支付一个看看 把包里那个=1改成0试试~ 证实确实存在支付逻辑 ...

  5. RMQ问题ST表

    稀疏表(Sparse Table表) 解决静态RMQ,区间最值查询问题的数据结构,树状数组(BIT)解决动态前缀和问题的数据结构: 例:https://www.luogu.org/problemnew ...

  6. 2020-09-10:java里Object类有哪些方法?

    福哥答案2020-09-10: registerNatives:private+static.getClass:返回此 Object 的运行时类. hashCode:返回该对象的哈希码值.equals ...

  7. Django 14天从小白到进阶- Day1 Django 初识

    来自作者:金角大王 本节内容 Http原理介绍 自行开发一个Web框架 WSGI介绍 Django介绍 MVC/MTV Django安装 创建项目与APP 开发第一个页面 为什么学Django? Go ...

  8. 【Java】Eclipse常用快捷键整理

    前言 还是最近在上Java课,由于疫情原因,看的网课,那里的老师比较实战派,很多时候不知道按了什么快捷键就立马出现了很骚的操作.网上查询后发现了一些快捷键对于我这个eclipse小白还是挺常用的,整理 ...

  9. weexplus真机调试

    一.连接真机 C:\Users\Lenovo>adb devices List of devices attached C9K7N15722004375 device 确定连接无误,否则执行we ...

  10. 封装vue基于element的select多选时启用鼠标悬停折叠文字以tooltip显示具体所选值

    相信很多公司的前端开发人员都会选择使用vue+element-ui的形式来开发公司的管理后台系统,基于element-ui很丰富的组件生态,我们可以很快速的开发管理后台系统的页面(管理后台系统的页面也 ...