seq2seq模型也称为Encoder-Decoder模型。顾名思义,这个模型有两个模块——Encoder(编码器)和Decoder(解码器)。编码器对输入数据进行编码,解码器对被编码的数据进行解码。此时编码器编码的信息浓缩了翻译所必需的信息,解码器基于这个浓缩的信息生成目标文本。

这里的数据一般指时序数据,即按时间顺序记录的数据列,具有可比性和结构化性。

编码器

以RNN为例,设计一个编码器结构如下



编码器利用RNN将时序数据转换为隐藏状态h。这里的RNN使用的是LSTM模型,编码器输出的向量h是LSTM层的最后一个隐藏状态,其中编码了翻译输入文本所需的信息。

解码器

LSTM层会接收编码器层最后隐藏状态输出的向量h。上一个层的输出预测会作为下一个层的输入参数,如此循环下去。

这一分隔符(特殊符号)。这个分隔符被用作通知解码器开始生成文本的信号。另外,解码器采样到出现为止,所以它也是结束信号。也就是说,分隔符可以用来指示解码器的“开始/结束”。

整体结构

连接编码器和解码器后的seq2seq整体结构如下,可以看出seq2seq是组合了两个RNN的神经网络。

对于seq2seq序列模型更多解释可看 博客

聊聊RNN与seq2seq的更多相关文章

  1. seq2seq模型详解及对比(CNN,RNN,Transformer)

    一,概述 在自然语言生成的任务中,大部分是基于seq2seq模型实现的(除此之外,还有语言模型,GAN等也能做文本生成),例如生成式对话,机器翻译,文本摘要等等,seq2seq模型是由encoder, ...

  2. Tensorflow动态seq2seq使用总结(r1.3)

    https://www.jianshu.com/p/c0c5f1bdbb88 动机 其实差不多半年之前就想吐槽Tensorflow的seq2seq了(后面博主去干了些别的事情),官方的代码已经抛弃原来 ...

  3. [实现] 利用 Seq2Seq 预测句子后续字词 (Pytorch)2

    最近有个任务:利用 RNN 进行句子补全,即给定一个不完整的句子,预测其后续的字词.本文使用了 Seq2Seq 模型,输入为 5 个中文字词,输出为 1 个中文字词.目录 关于RNN 语料预处理 搭建 ...

  4. [实现] 利用 Seq2Seq 预测句子后续字词 (Pytorch)

    最近有个任务:利用 RNN 进行句子补全,即给定一个不完整的句子,预测其后续的字词.本文使用了 Seq2Seq 模型,输入为5个中文字词,输出为一个中文字词. 目录 关于RNN 语料预处理 搭建数据集 ...

  5. 『深度应用』NLP机器翻译深度学习实战课程·壹(RNN base)

    深度学习用的有一年多了,最近开始NLP自然处理方面的研发.刚好趁着这个机会写一系列NLP机器翻译深度学习实战课程. 本系列课程将从原理讲解与数据处理深入到如何动手实践与应用部署,将包括以下内容:(更新 ...

  6. 从Seq2seq到Attention模型到Self Attention

    Seq2seq Seq2seq全名是Sequence-to-sequence,也就是从序列到序列的过程,是近年当红的模型之一.Seq2seq被广泛应用在机器翻译.聊天机器人甚至是图像生成文字等情境. ...

  7. 详解卷积神经网络(CNN)在语音识别中的应用

    欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 作者:侯艺馨 前言 总结目前语音识别的发展现状,dnn.rnn/lstm和cnn算是语音识别中几个比较主流的方向.2012年,微软邓力和俞栋老 ...

  8. 自然语言处理中的自注意力机制(Self-attention Mechanism)

    自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力 ...

  9. AAAI2018中的自注意力机制(Self-attention Mechanism)

    近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个.多个.交互式等等.去年 ...

  10. 深度学习attention 机制了解

    Attention是一种用于提升基于RNN(LSTM或GRU)的Encoder + Decoder模型的效果的的机制(Mechanism),一般称为Attention Mechanism.Attent ...

随机推荐

  1. 【阅读笔记】低照度图像增强-《Adaptive and integrated neighborhood-dependent approach for nonlinear enhancement of

    本文介绍改进INDANE算法的低照度图像增强改进算法(AINDANE算法),<Adaptive and integrated neighborhood-dependent approach fo ...

  2. 2021-7-30 MySql函数的使用归类整理

    Mysql字符的使用 SELECT ASCII(user_password) as 阿斯克码 FROM users;#返回首字符的ascii码 SELECT CHAR_LENGTH(user_pass ...

  3. NOIP 2023 模拟赛 20230712 C 论剑

    首先是伟大的题面 然后是数据范围 先解决1-4号数据点 1.枚举每个gcd的值p,统计一次答案,得到最小值(期望得分20) \[ans=\min_{p=2}^{\max a}\sum^n_{i=1}\ ...

  4. pandas: 设置列名&获取所有列名

    解决方案 download_page_data_df.columns = column_name2excel 参考链接 https://www.cnblogs.com/bigtreei/p/10145 ...

  5. Visual Studio常用快捷键(附带免费PDF)

    前言 对于开发者而言,熟悉快捷键的使用,能够起到事半功倍的作用,提高工作效率.以下是我整理的一份Visual Studio常用快捷键清单,希望能够帮助到你. 常用快捷方式 快捷键 功能 Ctrl + ...

  6. js高级之内存管理与闭包

    javacript中的内存管理 javascript中不需要我们手动去分配内存,当我们创建变量的时候,会自动给我们分配内存. 创建基本数据类型时,会在栈内存中开辟空间存放变量 创建引用数据类型时,会在 ...

  7. linux测试ipv6

    前言 操作系统版本:centos 7.6 curl版本:7.87(centos 7自带的curl版本是7.29,测ipv6会有问题) 系统开启ipv6 centos 7默认开启 ipv6,可检查net ...

  8. 4、Mybatis核心配置文件详解

    4.1.environments <!-- environments标签:配置多个连接数据库的环境 default属性:设置默认使用的环境的id --> <environments ...

  9. KVM下windows由IDE模式改为virtio模式蓝屏 开不开机

    KVM安装Windows默认使用的是qemu虚拟化IDE硬盘模式,在这种情况下,IO性能比较低,如果使用virtio的方式可以提高虚拟机IO性能. 于是我想将这台虚拟机迁移到openstack中管理 ...

  10. Badusb制作,远程别人电脑

    Badusb制作 插一下U盘黑一台电脑,插了我的U盘你可就是我的脑了,(▽) 理论准备 我们要用它就应该知道他的工作原理是怎么样的,方便我们去发散思维去使用它. Badusb的原理是利用HID(Hum ...