SciPylinalg模块是SciPy库中的一个子模块,它提供了许多用于线性代数运算的函数和工具,如矩阵求逆、特征值、行列式、线性方程组求解等。

相比于NumPy的linalg模块SciPy的linalg模块包含更多的高级功能,并且在处理一些特定的数值计算问题时,可能会表现出更好的性能。

1. 主要功能

scipy.linalg模块主要功能包括:

类别 主要函数 说明
基础运算 包含inv,slove等20多个函数 求解逆矩阵,线性方程等等
特征值问题 包含eig,eigvals等8个函数 求解各种类型矩阵的特征值
分解运算 包含lu,svd等将近30个函数 矩阵的LU分解,奇异值分解等等
矩阵运算 包含logm,sinm,cosm等10多个函数 计算矩阵的对数,指数,sin,cos等等
矩阵方程求解 包含solve_sylvester,solve_continuous_are等5个函数 计算西尔维斯特方程,CARE,DARE等代数方程
特殊矩阵运算 包含blcok_diag,circulant等将近30个函数 创建块对角矩阵,循环矩阵,相伴矩阵等等
其他 包含4个函数 BLAS,LSPACK等函数对象

Scipy库的线性代数模块包含将近100个各类函数,用于解决线性代数中的各类计算问题。

下面演示几种通过scipy.linalg来进行的常用计算。

2. 矩阵计算

提起线性代数,就不得不提矩阵运算。

2.1. 特征值

矩阵的特征值特征向量是矩阵理论中的重要概念,它们分别代表了矩阵对某些向量进行变换时所具有的特定的拉伸和旋转效果。

具体来说,对于一个给定的矩阵\(A\),如果存在一个非零的向量\(v\),使得\(Av\)是\(v\)的一个固定的倍数,
即\(Av = \lambda v\),那么\(\lambda\)就是\(A\)的一个特征值,\(v\)就是对应于特征值\(\lambda\)的特征向量

特征值和特征向量在许多领域都有应用,包括图像处理、信号处理、数据压缩、物理学、经济学等。
它们在求解线性方程组、判定矩阵的稳定性、计算矩阵的秩等数学问题中也有重要的应用。

import numpy as np
import scipy.linalg as sla A = np.random.rand(3, 3)
sla.eigvals(A)
# 运行结果(返回特征值)
array([0.87067114+0.j, 0.25270355+0.j, 0.52811777+0.j]) sla.eig(A)
# 运行结果(返回特征值和特征向量)
(array([0.87067114+0.j, 0.25270355+0.j, 0.52811777+0.j]),
array([[-0.55290631, -0.88616977, -0.80241551],
[-0.73988407, 0.44869198, -0.51813093],
[-0.38323122, 0.11566608, 0.29609067]]))

eigvals函数返回的是特征值,eig函数返回的是特征值和对应的特征向量。

2.2. 奇异值

特征值和特征向量是针对方阵的,也就是NxN的矩阵。
实际场景中,很多矩阵并不是方阵,为了了解这类矩阵,就要对其进行奇异分解。

具体来说,对于一个m×n的矩阵A,奇异分解就是将其分解为三个矩阵的乘积:

  1. 一个m×r的矩阵U
  2. 一个r×r的对称正定矩阵S
  3. 以及一个r×n的矩阵V

其中r是由A的奇异值所决定的。A的奇异值就是S矩阵的对角线元素,也就是A的正特征值的非负平方根。
这些奇异值反映了矩阵A在一些方向上的拉伸或压缩效果。

# 创建一个 4x3 的矩阵
A = np.random.rand(4, 3) # 奇异分解,得到 U,S,V矩阵
U, S, V = sla.svd(A)
print("奇异值: {}".format(S))
# 运行结果
奇异值: [1.6804974 0.67865812 0.3322078 ]

2.3. 逆矩阵

逆矩阵是指对于一个n阶方阵A,如果存在一个n阶方阵B,使得AB=BA=E
则称方阵A是可逆的,并称方阵B是A的逆矩阵
其中E是单位矩阵

逆矩阵的重要意义在于它可以表示为某个线性变换的逆变换,从而在逆变换的研究和应用中起到关键作用。
此外,逆矩阵还与方程组的解、行列式的性质等领域紧密相关。

A = np.random.rand(3, 3)

# 求解逆矩阵
sla.inv(A) # 运行结果:
array([[-1.41573129, 0.13168502, 1.5952333 ],
[ 3.572943 , -1.02580488, 1.10932935],
[-2.82777937, 2.10823192, -2.39404249]]) # 非方阵
A = np.random.rand(4, 3) # 非方阵求解逆矩阵会抛出异常
sla.inv(A)
# 运行结果:
ValueError: expected square matrix

Scipy库用inv函数求解逆矩阵非常简单,注意只有方阵能求解逆矩阵。

3. 线性方程组

其实求解线性方程组本质也是矩阵运算,比如下面的线性方程组:
\(\begin{cases}
\begin{align*}
3x+2y-z \quad & = 1\\
-y+3z \quad & = -3 \\
2x-2z \quad & =2
\end{align*}
\end{cases}\)

求解方式转换为系数矩阵和结果向量,然后求解:

# 创建一个系数矩阵
A = np.array([[3, 2, -1], [0, -1, 3], [2, 0, -2]]) # 创建一个结果向量
b = np.array([1, -3, 2]) # 使用solve函数求解线性方程组
ret = sla.solve(A, b) # 输出解向量
print("Solution vector ret:", ret)
# 运行结果:
Solution vector x: [ 0. -0. -1.]

4. 总结

本篇概要介绍了Scipy库的linalg模块,并演示了如何应用在求解矩阵和线性方程组。

linalg模块提供了非常丰富的各类函数,这里演示的几个函数目的是为了展示其使用方法,
线性代数中的各类运算几乎都可以在此模块中找到相应的函数。

【scipy 基础】--线性代数的更多相关文章

  1. SciPy 基础功能

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  2. 算法库:基础线性代数子程序库(Basic Linear Algebra Subprograms,BLAS)介绍

    调试DeepFlow光流算法,由于作者给出的算法是基于Linux系统的,所以要在Windows上运行,不得不做大量的修改工作.移植到Windows平台,除了一些头文件找不到外,还有一些函数也找不到.这 ...

  3. SciPy 线性代数

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  4. Python教程:进击机器学习(五)--Scipy《转》

    Scipy简介 文件输入和输出scipyio 线性代数操作scipylinalg 快速傅里叶变换scipyfftpack 优化器scipyoptimize 统计工具scipystats Scipy简介 ...

  5. python-数据处理的包Numpy,scipy,pandas,matplotlib

    一,NumPy包(numeric python,数值计算) 该包主要包含了存储单一数据类型的ndarry对象的多维数组和处理数组能力的函数ufunc对象.是其它包数据类型的基础.只能处理简单的数据分析 ...

  6. SciPy 信号处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  7. SciPy 统计

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  8. SciPy 图像处理

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  9. SciPy 优化

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

  10. SciPy 积分

    章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...

随机推荐

  1. docker :repository docker.io/zookeeper not found: does not exist or no pull access

    分析 略 解决 vi /etc/docker/daemon.json { "registry-mirrors" : [ "http://registry.docker-c ...

  2. 显示Label标签

    1 from PyQt5.QtWidgets import QApplication, QLabel, QWidget, QVBoxLayout 2 from PyQt5.QtCore import ...

  3. 犯得一些zz错误

    本文用于警戒自己,不要再犯以前的傻逼错误 noip没建子文件夹导致爆零 知道关同步流之后还用endl,导致超时 使用'\n'代替endl 3.多组测试数据使用for循环占用了 i 变量名,后面在for ...

  4. 牛客小白月赛65 E题 题解

    原题链接 题意描述 构造一个\(1\)到\(n\)的排列,使得其中正好有\(k\)个二元组\((i, j)\)满足,\(1\le i\lt j\le n\) && \(a_i - a_ ...

  5. 【技术积累】Linux中的命令行【理论篇】【七】

    atrm命令 命令介绍 atrm命令是Linux系统中的一个命令行工具,用于取消或删除已经安排的at命令.at命令是一种用于在指定时间执行一次性任务的工具. 命令说明 atrm命令的语法如下: atr ...

  6. struct(C# 参考)

    struct 类型是一种值类型,通常用来封装小型相关变量组,例如,矩形的坐标或库存商品的特征. 下面的示例显示了一个简单的结构声明. 1 public struct Book 2 { 3 public ...

  7. Oracle数据库经纬度坐标查询优化与结果错误原因分析、SQL中WKT超长文本字符串处理

    目录 一.Oracle几何空间数据对象和其他数据库的差异 二.Oracle查询一个经纬度坐标是否在边界内部 2.1 查询条件 2.2 查询结果错误,似乎是仅做了MBR匹配 2.3 错误原因 2.4 解 ...

  8. iOS证书的使用

    在iOS开发中,证书分两种,一种是对应于应用的证书,一种是通用证书

  9. openNebula集群搭建

    openNebula集群搭建 目录 openNebula集群搭建 OpenNebula概述 环境介绍及部署前准备 1. 安装步骤 1.关闭防火墙 2.配置epel源地和opennebula源 3.安装 ...

  10. Spring中事务的传播行为有哪些?

    Spring中事务的传播行为有哪些? 现在我们来谈一个场景,再来引出事务传播行为这个概念.现在有methodA( ) 和 methodB( ),而且两个方法都显示的开启了事务,那么methodB( ) ...