HDU 5954 - Do not pour out - [积分+二分][2016ACM/ICPC亚洲区沈阳站 Problem G]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5954
Problem Description
You have got a cylindrical cup. Its bottom diameter is 2 units and its height is 2 units as well.
The height of liquid level in the cup is d (0 ≤ d ≤ 2). When you incline the cup to the maximal angle such that the liquid inside has not been poured out, what is the area of the surface of the liquid?
Input
The first line is the number of test cases. For each test case, a line contains a float-point number d.
Output
For each test case, output a line containing the area of the surface rounded to 5 decimal places.
Sample Input
4
0
1
2
0.424413182
Sample Output
0.00000
4.44288
3.14159
3.51241
题意:
有一个圆柱形杯子,底部直径为 $2$,高为 $2$,告诉你当杯子水平放置时水面高度为 $d(0 \le d \le 2)$,
求当在水不倒出来的前提下杯子倾斜角度最大时,水面面积。
题解:
(参考https://blog.csdn.net/danliwoo/article/details/53002695)
当 $d=1$ 时,是临界情况。
当 $d>1$ 时,水面为一个椭圆,设 $\theta$ 为水面与杯底的夹角,则 $S = \pi R r = \pi \cdot \frac{1}{cos \theta} \cdot 1 = \frac{\pi}{cos \theta}$。
当 $d<1$ 时,水面为一个椭圆截取一部分:
若将水此时的形状,按平行于杯底的方向,分割成若干薄面,每个薄面的面积为 $S_0$,则水的体积为
$V = \int_{0}^{2}S_0dy$;
不难求得
$y_0 = x_0 tan \theta$
$1 + \cos \alpha = x_0$
$S_0 = \pi - \alpha + \sin \alpha \cos \alpha$
上三式,对于 $0 \le \alpha \le \pi$(即 $2 \ge x_0 \ge 0$)均成立。
则水的体积定积分可变为
$V = \int_{0}^{2}(\pi - \alpha + \sin \alpha \cos \alpha)d[(1 + \cos \alpha)\tan\theta]$
即
$\tan\theta \int_{\pi}^{\alpha_1}(\pi - \alpha + \sin \alpha \cos \alpha)(- \sin \alpha)d\alpha$
其中 $\alpha_1 = \arccos(\frac{2}{\tan\theta}-1)$。
对上式积分得
$V = \tan \theta [(\pi \cos \alpha) + (\sin \alpha - \alpha \cos \alpha) - \frac{1}{3} \sin^3 \alpha]_{\pi}^{\alpha_1}$
那么,我们可以二分 $\theta$,使得 $V$ 逼近 $\pi d$,从而确定 $\theta$,进而用 $S_{斜面} = \frac{S_{底面}}{cos \theta}$ 求得水面面积。
AC代码:
#include<bits/stdc++.h>
using namespace std;
const double pi=acos(-1.0);
const double eps=1e-;
inline bool equ(double x,double y){return fabs(x-y)<eps;}
inline double a_t(double t) {
double tmp=2.0/tan(t);
if(tmp>) tmp=2.0;
else if(tmp<) tmp=0.0;
return acos(tmp-1.0);
}
inline double I(double a) {
return pi*cos(a)+sin(a)-a*cos(a)-pow(sin(a),)/3.0;
}
inline double V(double t) {
if(equ(t,pi/2.0)) return ;
else return tan(t)*(I(a_t(t))-I(pi));
}
int main()
{
int T;
double d;
cin>>T;
while(T--)
{
cin>>d;
if(equ(d,))
{
printf("%.5f\n",);
continue;
}
if(d>)
{
printf("%.5f\n",pi/cos(atan(-d)));
continue;
} double l=pi/4.0, r=pi/2.0, t;
while(r-l>eps)
{
t=(l+r)/;
if(equ(V(t),pi*d)) break;
else if(V(t)>pi*d) l=t;
else r=t;
}
double a=a_t(t);
double S=pi-a+sin(a)*cos(a);
printf("%.5f\n",S/cos(t));
}
}
HDU 5954 - Do not pour out - [积分+二分][2016ACM/ICPC亚洲区沈阳站 Problem G]的更多相关文章
- HDU 5950 - Recursive sequence - [矩阵快速幂加速递推][2016ACM/ICPC亚洲区沈阳站 Problem C]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with ...
- HDU 5950 Recursive sequence 【递推+矩阵快速幂】 (2016ACM/ICPC亚洲区沈阳站)
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Other ...
- HDU 5952 Counting Cliques 【DFS+剪枝】 (2016ACM/ICPC亚洲区沈阳站)
Counting Cliques Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
- HDU 5948 Thickest Burger 【模拟】 (2016ACM/ICPC亚洲区沈阳站)
Thickest Burger Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)T ...
- HDU 5949 Relative atomic mass 【模拟】 (2016ACM/ICPC亚洲区沈阳站)
Relative atomic mass Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- hdu 5954 -- Do not pour out(积分+二分)
题目链接 Problem Description You have got a cylindrical cup. Its bottom diameter is 2 units and its heig ...
- 2016ACM/ICPC亚洲区沈阳站H - Guessing the Dice Roll HDU - 5955 ac自动机+概率dp+高斯消元
http://acm.hdu.edu.cn/showproblem.php?pid=5955 题意:给你长度为l的n组数,每个数1-6,每次扔色子,问你每个串第一次被匹配的概率是多少 题解:先建成ac ...
- HDU 5976 Detachment 【贪心】 (2016ACM/ICPC亚洲区大连站)
Detachment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- HDU 5979 Convex【计算几何】 (2016ACM/ICPC亚洲区大连站)
Convex Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
随机推荐
- Java多线程:SimpleDateFormat
一.SimpleDateFormat的线程安全问题 为什么SimpleDateFormat是线程不安全的? 下面通过一个案例代码来说明 public class DateUtilTest { publ ...
- WebApi XML,Json格式自定义,IEnumerable<T>,ArrayOf
global.ascx中application-start() GlobalConfiguration.Configuration.Formatters.XmlFormatter.UseXmlSeri ...
- Git 修正错误
大部分的人都会犯错.所以每VCS提供了一个功能,修正错误,直到特定的点. Git提供功能使用,我们可以撤销已作出的修改到本地资源库. 假设用户不小心做了一些更改,以他的本地的仓库,现在他要扔掉这些变化 ...
- 详解Linux安装GCC
为你详解Linux安装GCC方法 2009-12-11 14:05 佚名 博客园 字号:T | T 现在很多程序员都应用GCC,怎样才能更好的应用GCC.本文以在Redhat Linux安装GCC4. ...
- 学习Mysql过程中拓展的其他技术栈:Docker入门介绍
一.Docker的介绍和安装 1. Docker是什么 百度百科的介绍: Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linu ...
- pca , nmds , pcoa 图添加分组的椭圆
对于pca , nmds, pcoa 这些排序分析来说,我们可以从图中看出样本的排列规则,比如分成了几组. 为例样本分组更加的直观,我们可以根据实验设计时的样本分组情况,对属于同一个group的样本添 ...
- Excel公式中使用动态计算的地址
例:统计A列第四行开始,到公式所在行的前一行的非空白行的个数: =COUNTA(A4:INDIRECT(ADDRESS(ROW()-,COLUMN())))
- JSESSIONID、SESSION、cookie .
所谓session可以这样理解:当与服务端进行会话时,比如说登陆成功后,服务端会为用户开壁一块内存区间,用以存放用户这次会话的一些内容,比如说用户名之类的.那么就需要一个东西来标志这个内存区间是你的而 ...
- redis mongodb mysql 三大数据库的更简单的批量操作。批量任务自动聚合器。
1.redis mongodb mysql的python包都提供了批量插入操作,但需要自己在外部对一个例如1000 001个任务进行分解成每1000个为1个小批次,还要处理整除批次数量后的余数,如果做 ...
- [Model] VGG16
Jeff: fast.ai lesson 1&2感觉没讲什么干货. ~/keras/keras.json配置后台theano or tensorflow. ~/./theanorc处理器配置 ...