这题就单独写个题解吧。想了两天了,刚刚问了一个大佬思路基本上有了。

题意:

一个串$S$,一个串$T$,在$S$中选一段子串$S[i,j]$,在$T$中选一段前缀$T[1,k]$使得$S[i,j]T[1,k]$拼起来得到的字符串是回文,并且$S$的这个串长度大于$T$的这个。问有多少这样的三元组$(i,j,k)$

思路:

首先我们可以知道我们要找的其实就是这样三个串,$a,b,c$。其中$a$和$c$合起来是$S$中连续的一段子串,$b$在$T$中且$a$和$b$是对称的,$c$一定要是一个回文,且长度至少是$1$。

第一步比较简单我们可以用manacher求出$S$中的每一个回文。

比如上面图中的下面话的是一个以$i$为中心的回文,假设他的半径是$p$。

那么$i-p$到$i-1$都是满足条件的$a$串的起始点,因为他们后面都接着一段回文。

那么我们把$S$倒过来得到$S'$,拿$S'$和$T$跑exkmp,就可以得到$S'$的每一个后缀和$T$最长公共前缀。

这表示有$ex[i]$个串可以作为$a$串的选择。

答案应该是$a$串的选择个数$*c$串的选择个数

$c$串的选择个数怎么找呢,其实他就是以$i$为开头的回文串的个数。

用manacher加差分可以处理。具体的可以看hdu5157 https://www.cnblogs.com/wyboooo/p/9988397.html这道题。

对于$S$串的每一个下标$i$,$ex[lens - i - 1 + 1] = k$表示$S[i-1-k+1,i-1]$和$T[1,k]$对称。

由于我算$pre$数组的时候把下标往后挪了一个 所以每一个下标$i$的贡献是$ex[lens - i + 1] * pre[i]$

这个下标对应的算清楚,记得用上long long 就可以过啦!耶!

搞了两天我终于写出来了!

妈呀真的好激动啊!!!!!

 #include<iostream>
//#include<bits/stdc++.h>
#include<cstdio>
#include<cmath>
//#include<cstdlib>
#include<cstring>
#include<algorithm>
//#include<queue>
#include<vector>
//#include<set>
//#include<climits>
//#include<map>
using namespace std;
typedef long long LL;
#define N 100010
#define pi 3.1415926535
#define inf 0x3f3f3f3f const int maxn = 1e6 + ;
char s[maxn], ss[maxn * ], t[maxn], s_rev[maxn];
LL pre[maxn * ];
int lens, lent, p[maxn * ]; int init()
{
ss[] = '$';
ss[] = '#';
int lenss = ;
for(int i = ; i < lens; i++){
ss[lenss++] = s[i];
ss[lenss++] = '#';
}
ss[lenss] = '\0';
return lenss;
} void manacher()
{
int lenss = init();
int id, mx = ;
for(int i = ; i < lenss; i++){
if(i < mx){
p[i] = min(p[ * id - i], mx - i);
}
else{
p[i] = ;
}
while(ss[i - p[i]] == ss[i + p[i]])p[i]++;
if(mx < i + p[i]){
id = i;
mx = i + p[i];
}
}
} int nxt[maxn],ex[maxn]; //ex数组即为extend数组
//预处理计算next数组
void GETNEXT(char *str)
{
int i=,j,po,len=strlen(str);
nxt[]=len;//初始化next[0]
while(str[i]==str[i+]&&i+<len)//计算next[1]
i++;
nxt[]=i;
po=;//初始化po的位置
for(i=;i<len;i++)
{
if(nxt[i-po]+i<nxt[po]+po)//第一种情况,可以直接得到next[i]的值
nxt[i]=nxt[i-po];
else//第二种情况,要继续匹配才能得到next[i]的值
{
j=nxt[po]+po-i;
if(j<)j=;//如果i>po+nxt[po],则要从头开始匹配
while(i+j<len&&str[j]==str[j+i])//计算next[i]
j++;
nxt[i]=j;
po=i;//更新po的位置
}
}
}
//计算extend数组
void EXKMP(char *s1,char *s2)
{
int i=,j,po,len=strlen(s1),l2=strlen(s2);
GETNEXT(s2);//计算子串的next数组
while(s1[i]==s2[i]&&i<l2&&i<len)//计算ex[0]
i++;
ex[]=i;
po=;//初始化po的位置
for(i=;i<len;i++)
{
if(nxt[i-po]+i<ex[po]+po)//第一种情况,直接可以得到ex[i]的值
ex[i]=nxt[i-po];
else//第二种情况,要继续匹配才能得到ex[i]的值
{
j=ex[po]+po-i;
if(j<)j=;//如果i>ex[po]+po则要从头开始匹配
while(i+j<len&&j<l2&&s1[j+i]==s2[j])//计算ex[i]
j++;
ex[i]=j;
po=i;//更新po的位置
}
}
} int main()
{ while(scanf("%s", s) != EOF){
scanf("%s", t);
lens = strlen(s);
lent = strlen(t);
for(int i = ; i <= lens * + ; i++){
pre[i] = ;
p[i] = ;
ex[i] = ;
}
manacher();
for(int i = lens * ; i >= ; i--){
int x = i / ;
pre[x]++;
pre[x - (p[i] / )]--;
}
for(int i = lens; i >= ; i--){
pre[i] += pre[i + ];
} for(int i = ; i <= lens; i++){
s_rev[i] = s[lens - - i];
}
EXKMP(s_rev, t);
LL ans = ;
/*for(int i = 1; i <= lens; i++){
cout<<pre[i]<<" "<<ex[i]<<endl;
}*/
for(int i = ; i <= lens; i++){
//if(ex[lens - i + 1])
ans += 1LL * ex[lens - i + ] * pre[i];
}
printf("%I64d\n", ans);
}
return ;
}

2018ACM-ICPC南京区域赛M---Mediocre String Problem【exKMP】【Manacher】的更多相关文章

  1. 【2013南京区域赛】部分题解 hdu4802—4812

    上周末打了一场训练赛,题目是13年南京区域赛的 这场题目有好几个本来应该是我擅长的,但是可能是太久没做比赛了各种小错误代码写的也丑各种warusn trush搞得人很不爽 全场题之一的1002也没有想 ...

  2. 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)

    队名:Unlimited Code Works(无尽编码)  队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...

  3. Mediocre String Problem (2018南京M,回文+LCP 3×3=9种做法 %%%千年好题 感谢"Grunt"大佬的细心讲解)

    layout: post title: Mediocre String Problem (2018南京M,回文+LCP 3×3=9种做法 %%%千年好题 感谢"Grunt"大佬的细 ...

  4. ACM-ICPC2018南京赛区 Mediocre String Problem

    Mediocre String Problem 题解: 很容易想到将第一个串反过来,然后对于s串的每个位置可以求出t的前缀和它匹配了多少个(EXKMP 或者 二分+hash). 然后剩下的就是要处理以 ...

  5. 2018 ACM-ICPC南京区域赛题解

    解题过程 开场开A,A题shl看错题意,被制止.然后开始手推A,此时byf看错E题题意,开始上机.推出A的规律后,shl看了E题,发现题意读错.写完A题,忘记判断N=0的情况,WA+1.过了A后,sh ...

  6. 2018ACM-ICPC南京区域赛---AJGIDKM

    含[最小球覆盖][最大流isap]模板. 题面pdf https://codeforc.es/gym/101981/attachments/download/7891/20182019-acmicpc ...

  7. 2014ACM/ICPC亚洲区域赛牡丹江站汇总

    球队内线我也总水平,这所学校得到了前所未有的8地方,因为只有两个少年队.因此,我们13并且可以被分配到的地方,因为13和非常大的数目.据领队谁oj在之上a谁去让更多的冠军.我和tyh,sxk,doub ...

  8. 2019 ICPC 上海区域赛总结

    2019上海区域赛现场赛总结 补题情况(以下通过率为牛客提交): 题号 标题 已通过代码 通过率 我的状态 A Mr. Panda and Dominoes 点击查看 5/29 未通过 B Prefi ...

  9. HDU 4811 Ball -2013 ICPC南京区域现场赛

    题目链接 题意:三种颜色的球,现给定三种球的数目,每次取其中一个放到桌子上,排成一条线,每次放的位置任意,问得到的最大得分. 把一个球放在末尾得到的分数是它以前球的颜色种数 把一个球放在中间得到的分数 ...

随机推荐

  1. Ubuntu中安装和配置 Java JDK,并卸载自带OpenJDK(以Ubuntu 14.04为例)

    1.下载jdk-7u67-linux-x64.tar.gz 2.用ftp客户端工具filezilla上传到ubuntu的合适文件夹.如果如果不能上传到指定文件夹可能是文件夹权限不足,修改文件夹可执行权 ...

  2. JVM 基础:回收哪些内存/对象 引用计数算法 可达性分析算法 finalize()方法 HotSpot实现分析

    转自:https://blog.csdn.net/tjiyu/article/details/53982412 1-1.为什么需要了解垃圾回收 目前内存的动态分配与内存回收技术已经相当成熟,但为什么还 ...

  3. GDAL对TIF创建内建金字塔一个问题

    gdalwarp输出tif图像的时候,默认如果没有使用BIGTIFF=YES选项,则会根据输出影像的大小进行判断,低于4G则不适用bigtiff格式. 对于非bigtiff图像,如果这时候使用gdal ...

  4. SNF开发平台WinForm-Grid表格控件大全

    我们在开发系统时,会有很多种控件进行展示,甚至有一些为了方便的一些特殊需求. 那么下面就介绍一些我们在表格控件里常用的方便的控件:   1.Grid表格查询条 Grid表格下拉 3.Grid表格弹框选 ...

  5. 使用Nginx实现灰度发布(转)

    灰度发布是指在黑与白之间,能够平滑过渡的一种发布方式.AB test就是一种灰度发布方式,让一部分用户继续用A,一部分用户开始用B,如果用户对B没有什么反对意见,那么逐步扩大范围,把所有用户都迁移到B ...

  6. django --- DetailView源码分析

    [背景] 最近在看django官方文档的class-based-views这一节的时候一直不得要领,感觉自己清楚,但是回想起来又没有脉络:于是没有办法只 能是“暗中观察”django的源码了. 刚打开 ...

  7. 空间谱专题10:MUSIC算法

    作者:桂. 时间:2017-09-19  19:41:40 链接:http://www.cnblogs.com/xingshansi/p/7553746.html 前言 MUSIC(Multiple ...

  8. Vue(八):监听属性watch

    Vue.js 可以通过 watch 来响应数据的变化. 以下实例模拟购物车里商品数量增加,对应价格也增加 <!--模拟购物车商品数量增加,价格也随之增加--> <div id = & ...

  9. 译: 5. RabbitMQ Spring AMQP 之 Topic 主题

    在上一个教程中,我们提高了消息传递的灵活 我们使用direct交换而不是使用仅能够进行虚拟广播的fanout交换, 并且获得了基于路由key 有选择地接收消息的可能性. 虽然使用direct 交换改进 ...

  10. pyenv BUILD FAILED解决方法

    在本机mac上安装pyenv安装成功后,用pyenv来安装python 3.5.0又出现了如下的问题: -> pyenv install 3.5.0 Downloading Python-3.5 ...