首先看一下神经网络模型,一个比较简单的两层神经。

代码如下:

# 定义参数
n_hidden_1 = 256 #第一层神经元
n_hidden_2 = 128 #第二层神经元
n_input = 784 #输入大小,28*28的一个灰度图,彩图没有什么意义
n_classes = 10 #结果是要得到一个几分类的任务 # 输入和输出
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes]) # 权重和偏置参数
stddev = 0.1
weights = {
'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=stddev)),
'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
print ("NETWORK READY") def multilayer_perceptron(_X, _weights, _biases):
#第1层神经网络 = tf.nn.激活函数(tf.加上偏置量(tf.矩阵相乘(输入Data, 权重W1), 偏置参数b1))
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1']))
#第2层的格式与第1层一样,第2层的输入是第1层的输出。
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, _weights['w2']), _biases['b2']))
#返回预测值
return (tf.matmul(layer_2, _weights['out']) + _biases['out']) # 预测
pred = multilayer_perceptron(x, weights, biases) # 计算损失函数和优化
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optm = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost)
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accr = tf.reduce_mean(tf.cast(corr, "float")) # 初始化
init = tf.global_variables_initializer()
print ("FUNCTIONS READY") # 训练
training_epochs = 20
batch_size = 100
display_step = 4
# LAUNCH THE GRAPH
sess = tf.Session()
sess.run(init)
# 优化器
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# 迭代训练
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
feeds = {x: batch_xs, y: batch_ys}
sess.run(optm, feed_dict=feeds)
avg_cost += sess.run(cost, feed_dict=feeds)
avg_cost = avg_cost / total_batch
# 打印结果
if (epoch+1) % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
feeds = {x: batch_xs, y: batch_ys}
train_acc = sess.run(accr, feed_dict=feeds)
print ("TRAIN ACCURACY: %.3f" % (train_acc))
feeds = {x: mnist.test.images, y: mnist.test.labels}
test_acc = sess.run(accr, feed_dict=feeds)
print ("TEST ACCURACY: %.3f" % (test_acc))
print ("OPTIMIZATION FINISHED")

利用Tensorflow实现神经网络模型的更多相关文章

  1. 通过TensorFlow训练神经网络模型

    神经网络模型的训练过程其实质上就是神经网络参数的设置过程 在神经网络优化算法中最常用的方法是反向传播算法,下图是反向传播算法流程图: 从上图可知,反向传播算法实现了一个迭代的过程,在每次迭代的开始,先 ...

  2. kaggle赛题Digit Recognizer:利用TensorFlow搭建神经网络(附上K邻近算法模型预测)

    一.前言 kaggle上有传统的手写数字识别mnist的赛题,通过分类算法,将图片数据进行识别.mnist数据集里面,包含了42000张手写数字0到9的图片,每张图片为28*28=784的像素,所以整 ...

  3. 利用Tensorflow实现卷积神经网络模型

    首先看一下卷积神经网络模型,如下图: 卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC池化层:为了减少运算量和数据维度而设置的一 ...

  4. 手写数字识别 ----卷积神经网络模型官方案例注释(基于Tensorflow,Python)

    # 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/ ...

  5. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  6. Tensorflow 对上一节神经网络模型的优化

    本节涉及的知识点: 1.在程序中查看变量的取值 2.张量 3.用张量重新组织输入数据 4.简化的神经网络模型 5.标量.多维数组 6.在TensorFlow中查看和设定张量的形态 7.用softmax ...

  7. Keras结合Keras后端搭建个性化神经网络模型(不用原生Tensorflow)

    Keras是基于Tensorflow等底层张量处理库的高级API库.它帮我们实现了一系列经典的神经网络层(全连接层.卷积层.循环层等),以及简洁的迭代模型的接口,让我们能在模型层面写代码,从而不用仔细 ...

  8. tensorflow 神经网络模型概览;熟悉Eager 模式;

    典型神经网络模型:(图片来源:https://github.com/madalinabuzau/tensorflow-eager-tutorials) 保持更新,更多内容请关注 cnblogs.com ...

  9. 学习笔记CB009:人工神经网络模型、手写数字识别、多层卷积网络、词向量、word2vec

    人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档 ...

随机推荐

  1. Flask web开发之路十一

    首先写一下cookie和session的概念,然后是Flask中session的工作机制以及操作session ### cookie: 1. `cookie`出现的原因:在网站中,http请求是无状态 ...

  2. triangular distribution

    mode(众数), 一组数据中出现次数最多的那个(或那些)数值. 众数可以不存在或多于一个. 例如, 1,2,3,3,4的众数是3. 1,2,2,3,3,4的众数是2和3. 1,2,3,4,5没有众数 ...

  3. db2 基础语法

    一.db2 基础 基本语法 注释:“--”(两个减号) 字符串连接:“||” 如set msg=’aaaa’||’bbbb’,则msg为’aaaabbbb’ 字符串的引用:‘’(一定用单引号),如果需 ...

  4. AngularJs $watch监听模型变化

    $watch是一个scope函数,用于监听模型变化,当你的模型部分发生变化时它会通知你. $watch(watchExpression, listener, objectEquality); 举个栗子 ...

  5. rabbitmq集群部署及配置

    消息中间件rabbitmq,一般以集群方式部署,主要提供消息的接受和发送,实现各微服务之间的消息异步.本篇将以rabbitmq+HA方式进行部署. 一.原理介绍 rabbitmq是依据erlang的分 ...

  6. Linux 配置SFTP,配置用户访问权限

    之前我服务器是使用的Windows Server 2003,这段时间由于访问量变大我还是机智的换成Linux了,在搭建FTP的时候看到网上都是推荐vsftpd,不过我不推荐这个家伙,看官且看下文. 我 ...

  7. MyEclipse下创建的项目 导入eclipse

    1.导入在MyEclipse下创建的项目 2.把项目变成Web项目,在项目上右键-->Properties-->选择Project Facets-->点击Convert to fac ...

  8. 第一章:深入.NET框架

     1..net框架结构 主要包含公共语言运行时(CLR)和框架类库(.NET Framework 类库 ,FCL) 2.CLR 1.对于一个将要面向.NET平台进行开发的人来说,了解一下.NET平台的 ...

  9. MySQL 5.5加主键锁读问题【转载】

    背景      有同学讨论到MySQL 5.5下给大表加主键时会锁住读的问题,怀疑与fast index creation有关,这里简单说明下. 对照现象          为了说明这个问题的原因,有 ...

  10. 设计模式之装饰模式(Decorator)摘录

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/fengbingchun/article/details/29237955 23种GOF设计模式一般分 ...