Cat VS Dog
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)

Problem Description

The zoo have N cats and M dogs, today there are P children visiting the zoo, each child has a like-animal and a dislike-animal, if the child’s like-animal is a cat, then his/hers dislike-animal must be a dog, and vice versa.

Now the zoo administrator is removing some animals, if one child’s like-animal is not removed and his/hers dislike-animal is removed, he/she will be happy. So the administrator wants to know which animals he should remove to make maximum number of happy children.

Input

The input file contains multiple test cases, for each case, the first line contains three integers N <= 100, M <= 100 and P <= 500.

Next P lines, each line contains a child’s like-animal and dislike-animal, C for cat and D for dog. (See sample for details)

Output

For each case, output a single integer: the maximum number of happy children.

Sample Input

1 1 2

C1 D1

D1 C1

1 2 4

C1 D1

C1 D1

C1 D2

D2 C1

Sample Output

1

3

Hint

Case 2: Remove D1 and D2, that makes child 1, 2, 3 happy.

题意:有p个孩子参观动物园,动物园里面有n只猫和m只狗,每个孩子喜欢猫讨厌狗,或者喜欢狗讨厌猫。当把一个孩子不喜欢的动物移走,喜欢的动物留下,这个孩子才会高兴。 问最多能使多少个孩子高兴。

解题思路:题目有一个关键点,孩子喜欢猫,必然不喜欢狗,反之。 即猫和猫之间,狗和狗之间一定不存在矛盾关系,符合二分图的概念。

需要求满足条件的最大独立集,而最大独立集=节点总个数-最小覆盖集,最小覆盖集=最大匹配,所以最大独立集=节点总个数-最大匹配。问题转化为了求最大匹配。

建图:

以孩子作为节点,如果A小孩喜欢的动物与B小孩讨厌的动物一样,或者A小孩讨厌的动物与B小孩喜欢的动物一样,那AB之间就存在着排斥关系,则他们之间连接一条边。 然后求出最多有多少对孩子之间产生矛盾,用这个结果除以2就是最大匹配数。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std; const int N =555;
vector<int> vec[N]; //代表不同的孩子
char like[N][11],dis[N][111];
int result[N],vis[N]; bool find(int a)
{
int i;
for(i=0;i<vec[a].size();i++)
{
int u=vec[a][i];
if(!vis[u])
{
vis[u]=1;
if(!result[u]||find(result[u])) //如果i未在前一个匹配中或者从其相邻的节点出发可以有增广路
{
{
result[u]=a;
return true;
}
}
}
return false;
}
int main()
{
int i,j,n,m,p;
while(scanf("%d%d%d",&n,&m,&p)!=EOF)
{
memset(vec,0,sizeof(vec));
memset(result,0,sizeof(result));
for(i=0;i<p;i++)
{
scanf("%s%s",like[i],dis[i]);
}
for(i=0;i<p;i++)
{
for(j=i+1;j<p;j++)
{
if(!strcmp(like[i],dis[j])||!strcmp(dis[i],like[j]))
{
vec[i].push_back(j); //i与j产生矛盾,则在i与j之间建立路径
vec[j].push_back(i);
}
}
}
int ans=0;
for(i=0;i<p;i++)
{
memset(vis,0,sizeof(vis));
if(find(i))
ans++; }
printf("%d\n",p-ans/2);
}
return 0;
}

hdu3829 二分匹配 最大独立集的更多相关文章

  1. HDU - 1068 Girls and Boys(二分匹配---最大独立集)

    题意:给出每个学生的标号及与其有缘分成为情侣的人的标号,求一个最大集合,集合中任意两个人都没有缘分成为情侣. 分析: 1.若两人有缘分,则可以连一条边,本题是求一个最大集合,集合中任意两点都不相连,即 ...

  2. hdu 4169 二分匹配最大独立集 ***

    题意:有水平N张牌,竖直M张牌,同一方向的牌不会相交.水平的和垂直的可能会相交,求最少踢出去几张牌使剩下的牌都不相交. 二分匹配 最小点覆盖=最大匹配. 链接:点我 坐标点作为匹配的端点 #inclu ...

  3. Light OJ 1373 Strongly Connected Chemicals 二分匹配最大独立集

    m种阳离子 n种阴离子 然后一个m*n的矩阵 第i行第j列为1代表第i种阴离子和第j种阴离子相互吸引 0表示排斥 求在阳离子和阴离子都至少有一种的情况下 最多存在多少种离子能够共存 阴阳离子都至少须要 ...

  4. POJ 1466 Girls and Boys 黑白染色 + 二分匹配 (最大独立集) 好题

    有n个人, 其中有男生和女生,接着有n行,分别给出了每一个人暗恋的对象(不止暗恋一个) 现在要从这n个人中找出一个最大集合,满足这个集合中的任意2个人,都没有暗恋这种关系. 输出集合的元素个数. 刚开 ...

  5. HDU 1068 Girls and Boys 二分图最大独立集(最大二分匹配)

    Girls and Boys Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  6. POJ 1466 大学谈恋爱 二分匹配变形 最大独立集

    Girls and Boys Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 11694   Accepted: 5230 D ...

  7. [kuangbin带你飞]专题十 匹配问题 二分匹配部分

    刚回到家 开了二分匹配专题 手握xyl模板 奋力写写写 终于写完了一群模板题 A hdu1045 对这个图进行 行列的重写 给每个位置赋予新的行列 使不能相互打到的位置 拥有不同的行与列 然后左行右列 ...

  8. nyoj 237 游戏高手的烦恼 二分匹配--最小点覆盖

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=237 二分匹配--最小点覆盖模板题 Tips:用邻接矩阵超时,用数组模拟邻接表WA,暂时只 ...

  9. HDU 4619 Warm up 2(2013多校2 1009 二分匹配)

    Warm up 2 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total S ...

随机推荐

  1. Nowcoder Hash Function ( 拓扑排序 && 线段树优化建图 )

    题目链接 题意 : 给出一个哈希表.其避免冲突的方法是线性探测再散列.现在问你给出的哈希表是否合法.如果合法则输出所有元素插入的顺序.如果有多解则输出字典序最小的那一个.如果不合法则输出 -1 分析 ...

  2. UVa 1595 Symmetry (set && math)

    题意:给出n个在直角坐标系上的点,问你能不能找出一条竖轴(即垂直于x的轴)使得所有的点根据这条轴对称,能则输出YES,否则输出NO 分析:首先需要找到对称轴的值,将所有n个点的x轴的值加起来然后去除以 ...

  3. NOI 2019 AFO 记

    Text 真的退役了... 非常抱歉 这篇文章暂时咕掉了

  4. Unity3D_(游戏)卡牌04_游戏界面

        启动屏界面.主菜单界面.选关界面.游戏界面 卡牌01_启动屏界面 传送门 卡牌02_主菜单界面 传送门 卡牌03_选关界面 传送门 卡牌04_游戏界面    传送门 选关界面效果 (源代码在文 ...

  5. spring-boot 中实现标准 redis 分布式锁

    一,前言 redis 现在已经成为系统缓存的必备组件,针对缓存读取更新操作,通常我们希望当缓存过期之后能够只有一个请求去更新缓存,其它请求依然使用旧的数据.这就需要用到锁,因为应用服务多数以集群方式部 ...

  6. C++入门经典-例6.1-一维数组元素

    1:代码如下: // 6.1.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <iostream> using ...

  7. LeetCode 120. 三角形最小路径和(Triangle)

    题目描述 给定一个三角形,找出自顶向下的最小路径和.每一步只能移动到下一行中相邻的结点上. 例如,给定三角形: [ [2], [3,4], [6,5,7], [4,1,8,3] ] 自顶向下的最小路径 ...

  8. 什么是web语义化,有什么好处

    web语义化是指通过HTML标记表示页面包含的信息,包含了HTML标签的语义化和css命名的语义化.HTML语义化是指:通过使用包含语义的标签(如h1-h6)恰当地表示文档结构 CSS命名的语义化是指 ...

  9. 三步解决IDEA系列开发工具 RubyMine、IntelliJ IDEA 卡顿问题

    近日有小伙伴跟我反映说自己的开发工具很卡,有没有什么解决方案?答案是当然有啦!接下来看看怎么设置! 1.打开RubyMine,或IDEA,上边工具栏选择Help,下拉选择Edit Custom VM ...

  10. nginx不记录指定文件类型的日志

    1.指定记录文件日志记录的内容. vim /usr/local/nginx/conf/nginx.conf如下部分: log_format dd '$remote_addr $http_x_forwa ...