c++多线程并发学习笔记(2)
等待一个时间或其他条件
在一个线程等待完成任务时,会有很多选择:
1. 它可以持续的检查共享数据标志(用于做保护工作的互斥量),直到另一个线程完成工作时对这个标志进行重设。缺点:资源浪费,开销大
2. 在等待线程的检查间隙,使用std::this_thread::sleep_for()进行周期性的间歇。 缺点:休眠时间抉择困难
bool flag;
std::mutex m; void wait_for_flag()
{
std::unique_lock<std::mutex> lk(m);
while(!flag)
{
lk.unlock(); // 1 解锁互斥量
std::this_thread::sleep_for(std::chrono::milliseconds()); // 2 休眠100ms
lk.lock(); // 3 再锁互斥量
}
}
3. 使用C++标准库提供的工具去等待事件的发生。通过另一线程触发等待事件的机制是最基本的唤醒方式,这种机制就称为“条件变量”。
C++标准库对条件变量有两套实现:std::condition_variable
和std::condition_variable_any
。这两个实现都包含在<condition_variable>
头文件的声明中。两者都需要与一个互斥量一起才能工作(互斥量是为了同步)
std::condition_variable:只能与std::mutex一起工作,开销少
std::condition_variable_any:可以和任何满足最低标准的互斥量一起工作,开销大
std::condition_variable 提供两个重要的接口:notify_one()
和wait()。
wait()
可以让线程陷入休眠状态,notify_one()
就是唤醒处于wait
中的其中一个条件变量(可能当时有很多条件变量都处于wait
状态)。
template<typename Predicate>
wait(std::unique_lock<std::mutex>& lk, Predicate pred)
wait()会去检查这些条件(通过调用所提供的函数),当条件满足(调用所提供的函数返回true)时返回。如果条件不满足(调用所提供的函数返回false),wait()函数将解锁互斥量,并且将这个线程置于阻塞或等待状态。另外一个线程调用notify_one()通知条件变量时,线程从睡眠状态中苏醒,重新获取互斥锁,并且再次检查条件是否满足。
std::condition_variable::wait的一个最小化实现:
template<typename Predicate>
void minimal_wait(std::unique_lock<std::mutex>& lk,Predicate pred){
while(!pred()){
lk.unlock();
lk.lock();
}
}
考虑一个生产者消费者模型:一个线程往队列中放入数据,一个线程往队列中取数据,取数据前需要判断一下队列中确实有数据,由于这个队列是线程间共享的,所以,需要使用互斥锁进行保护,一个线程在往队列添加数据的时候,另一个线程不能取,反之亦然。用互斥锁实现如下:
#include <iostream>
#include <deque>
#include <thread>
#include <mutex> std::deque<int> q;
std::mutex mu; void function_1() {
int count = ;
while (count > ) {
std::unique_lock<std::mutex> locker(mu);
q.push_front(count);
locker.unlock();
std::this_thread::sleep_for(std::chrono::seconds());
count--;
}
} void function_2() {
int data = ;
while ( data != ) {
std::unique_lock<std::mutex> locker(mu);
if (!q.empty()) {
data = q.back();
q.pop_back();
locker.unlock();
std::cout << "t2 got a value from t1: " << data << std::endl;
} else {
locker.unlock();
}
}
}
int main() {
std::thread t1(function_1);
std::thread t2(function_2);
t1.join();
t2.join();
return ;
}
问题在于,如果生产者的速度比较慢,代码中每隔1s才会有一次数据生产,这时消费者都要去获取锁-->判断队列里是否有数据-->释放锁,这个过程就是资源的浪费,无用功使得cpu占用率很高。
使用std::this_thread::sleep_for()来对代码进行改造:
void function_2() {
int data = ;
while ( data != ) {
std::unique_lock<std::mutex> locker(mu);
if (!q.empty()) {
data = q.back();
q.pop_back();
locker.unlock();
std::cout << "t2 got a value from t1: " << data << std::endl;
} else {
locker.unlock();
std::this_thread::sleep_for(std::chrono::milliseconds());
}
}
}
这样可以减低cpu占用率,但问题在于在实际操作中如何选择休眠时间,太长或者太短都不好。
最后可以使用条件变量来对这个代码进行改造:
#include <iostream>
#include <deque>
#include <thread>
#include <mutex>
#include <condition_variable> std::deque<int> q;
std::mutex mu;
std::condition_variable cond; void function_1() {
int count = ;
while (count > ) {
std::unique_lock<std::mutex> locker(mu);
q.push_front(count);
locker.unlock();
cond.notify_one(); // Notify one waiting thread, if there is one.
std::this_thread::sleep_for(std::chrono::seconds());
count--;
}
} void function_2() {
int data = ;
while ( data != ) {
std::unique_lock<std::mutex> locker(mu);
cond.wait(locker, [](){ return !q.empty();} ); // Unlock mu and wait to be notified
data = q.back();
q.pop_back();
locker.unlock();
std::cout << "t2 got a value from t1: " << data << std::endl;
}
}
int main() {
std::thread t1(function_1);
std::thread t2(function_2);
t1.join();
t2.join();
return ;
}
需要注意的几点:
在配合条件变量使用锁时,使用std::unique_lock比std::lock_guard合适,因为在wait内部有对锁的unlock和lock操作
使用细粒度锁,尽量减小锁的范围,在notify_one()
的时候,不需要处于互斥锁的保护范围内,所以在唤醒条件变量之前可以将锁unlock()
。
参考资料:
https://www.jianshu.com/p/c1dfa1d40f53
https://chenxiaowei.gitbook.io/c-concurrency-in-action-second-edition-2019/4.0-chinese/4.1-chinese
c++多线程并发学习笔记(2)的更多相关文章
- c++多线程并发学习笔记(0)
多进程并发:将应用程序分为多个独立的进程,它们在同一时刻运行.如图所示,独立的进程可以通过进程间常规的通信渠道传递讯息(信号.套接字..文件.管道等等). 优点:1.操作系统在进程间提供附附加的保护操 ...
- c++多线程并发学习笔记(1)
共享数据带来的问题:条件竞争 避免恶性条件竞争的方法: 1. 对数据结构采用某种保护机制,确保只有进行修改的线程才能看到修改时的中间状态.从其他访问线程的角度来看,修改不是已经完成了,就是还没开始. ...
- 多线程编程学习笔记——使用异步IO(一)
接上文 多线程编程学习笔记——使用并发集合(一) 接上文 多线程编程学习笔记——使用并发集合(二) 接上文 多线程编程学习笔记——使用并发集合(三) 假设以下场景,如果在客户端运行程序,最的事情之一是 ...
- 多线程编程学习笔记——使用异步IO
接上文 多线程编程学习笔记——使用并发集合(一) 接上文 多线程编程学习笔记——使用并发集合(二) 接上文 多线程编程学习笔记——使用并发集合(三) 假设以下场景,如果在客户端运行程序,最的事情之一是 ...
- Java多线程技术学习笔记(二)
目录: 线程间的通信示例 等待唤醒机制 等待唤醒机制的优化 线程间通信经典问题:多生产者多消费者问题 多生产多消费问题的解决 JDK1.5之后的新加锁方式 多生产多消费问题的新解决办法 sleep和w ...
- 多线程编程学习笔记——async和await(一)
接上文 多线程编程学习笔记——任务并行库(一) 接上文 多线程编程学习笔记——任务并行库(二) 接上文 多线程编程学习笔记——任务并行库(三) 接上文 多线程编程学习笔记——任务并行库(四) 通过前面 ...
- 多线程编程学习笔记——async和await(二)
接上文 多线程编程学习笔记——async和await(一) 三. 对连续的异步任务使用await操作符 本示例学习如何阅读有多个await方法方法时,程序的实际流程是怎么样的,理解await的异步 ...
- 多线程编程学习笔记——async和await(三)
接上文 多线程编程学习笔记——async和await(一) 接上文 多线程编程学习笔记——async和await(二) 五. 处理异步操作中的异常 本示例学习如何在异步函数中处理异常,学习如何对多 ...
- 多线程编程学习笔记——编写一个异步的HTTP服务器和客户端
接上文 多线程编程学习笔记——使用异步IO 二. 编写一个异步的HTTP服务器和客户端 本节展示了如何编写一个简单的异步HTTP服务器. 1.程序代码如下. using System; using ...
随机推荐
- C#.Net集成Bartender条码打印,VS调试运行可以打印,发布到IIS运行打印报错
C#.Net集成Bartender条码打印,VS调试运行可以打印,发布到IIS运行打印报错 问题原因: 问题出现在iis账户权限. 解决方法: iis默认是用network service这个账户去执 ...
- PHP基础-表达式介绍
表达式是 PHP 最重要的基石.在PHP 编程 中,几乎所写的任何东西都是一个表达式.简单但却最精确的定义一个表达式的方式就是“任何有值的东西”. 最基本的表达式形式是常量和变量.当键入“$a = 5 ...
- noi 求分数序列和 x
求分数序列和 总时间限制: 1000ms 内存限制: 65536kB 描述 有一个分数序列 q1/p1,q2/p2,q3/p3,q4/p4,q5/p5,.... ,其中qi+1= qi+ pi, ...
- BZOJ 1901 洛谷 P2617 ZOJ 2112 Dynamic Rankings
以下时空限制来自zoj Time limit 10000 ms Memory limit 32768 kB OS Linux Source Online Contest of Christopher' ...
- jQuery_完成省市二级联动
当填表的时候会让你设计某省某市怎么设计,应该明白,如果你选择了一个确定的省,那么在第二个下拉框内则不会有除了你选择的省的市之外的名称.而这功能用js来实现很麻烦,但是用jq确很容易实现. 原表结构: ...
- elasticsearch-head插件的安装
2.4.1 安装nodejs Node.js是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node.js是一个Javascript运行环境(runtime environm ...
- hibernate多对一单项关联映射
1.实体类编写: 用户类: public class User { private int id; private String name; private Group group; ..... } ...
- 20165218 《网络对抗技术》 Exp9 网络安全基础
Exp9 网络完全基础 基础问题回答 SQL注入攻击原理,如何防御 所谓SQL注入,就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令. ...
- 第四周实验总结&实验报告
实验二 Java简单类与对象 实验目的 掌握类的定义,熟悉属性.构造函数.方法的作用,掌握用类作为类型声明变量和方法返回值: 理解类和对象的区别,掌握构造函数的使用,熟悉通过对象名引用实例的方法和属性 ...
- @清晰掉 qsort()
qsort函数描述: http://www.cnblogs.com/sooner/archive/2012/04/18/2455011.html qsort()函数实现: /*** *qsort.c ...