Description

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Input

输入文件的第一行包含两个整数 n和p,含义如上所述。

Output

输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。

Sample Input

20 23

Sample Output

16

HINT

100%的数据中,1 ≤ ��� N ≤ 106, P��� ≤ 10^9,p是一个质数。 数据有所加强

如图

把问题转化为

用1--n的数 组成一个完全二叉树使之满足小根堆性质的方案数

考虑dp

设i点的子结点数量为size[i]

则$dp[i]=C(s[i]-1,s[i*2])*f[i*2]*f[i*2+1]$

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,p;
ll dp[],size[],fac[];
ll qpow(ll a,ll b,ll mod)
{
ll res=;
a=a%mod;
while(b)
{
if(b&)res=(res*a)%mod;
b=b>>;
a=(a*a)%mod;
}
return res;
}
ll C(ll x,ll y,ll mod)
{
if(x<y)return ;
return fac[x]*qpow(fac[y],p-,p)%p*qpow(fac[x-y],p-,p)%p;
}
ll lucas(ll x,ll y,ll p)
{
if(!y)return ;
return C(x%p,y%p,p)*lucas(x/p,y/p,p)%p;
}
int main()
{
scanf("%lld%lld",&n,&p);
fac[]=fac[]=;
for(int i=;i<=n;i++)fac[i]=fac[i-]*i%p;
for(int i=n;i;i--)
{
size[i]=size[i<<]+size[i<<|]+;
dp[i]=lucas(size[i]-,size[i<<],p);
if(n>=(i<<))dp[i]=dp[i]*dp[i<<]%p;
if(n>=(i<<|))dp[i]=dp[i]*dp[i<<|]%p;
}
//for(int i=1;i<=n;i++)cout<<dp[i]<<endl;
cout<<dp[]<<endl;
return ;
}

[ZJOI2010]排列计数 题解的更多相关文章

  1. BZOJ2111:[ZJOI2010]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...

  2. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  3. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  4. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  5. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  6. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  7. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  8. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  9. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

随机推荐

  1. epoll学习(二)

    首先看程序一,这个程序想要实现的功能是当用户从控制台有任何输入操作时,输出”hello world!”. l 程序一 #include <unistd.h> #include <io ...

  2. hdu 2089 不要62 (数位dp)

    Description 杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别 ...

  3. 【Flutter学习】之绘画实例(一)

    一,概述 画布(Canvas) 画布是一个矩形区域,我们可以控制其每一像素来绘制我们想要的内容 Canvas 拥有多种绘制点.线.路径.矩形.圆形.以及添加图像等的方法,结合这些方法我们可以绘制出千变 ...

  4. kubernetes session保持、容器root特权模式开启、多端口容器service 2个端口开启等设置

    session保持如何在service内部实现session保持呢?当然是在service的yaml里进行设置啦. 在service的yaml的sepc里加入以下代码: sessionAffinity ...

  5. AcWing 227. 小部件厂 (高斯消元)打卡

    题目:https://www.acwing.com/problem/content/description/229/ 题意:有很多个零件,每个零件的生产时间都在3-9天之间,现在只知道每个工人的生产部 ...

  6. Node.js环境下通过Express创建Web项目

    通过Express命令创建项目 Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用,和丰富的 HTTP 工具. 使用 Express ...

  7. 91、R语言编程基础

    1.查看当前工作空间 > getwd() ] "C:/Users/P0079482.HHDOMAIN/Documents" > 2.查看内存中有哪些对象 > ls ...

  8. Python做单元测试小实例

    import sys#先定义一个函数,这个函数是计算高*宽,并返回计算结果def test(hight,width):    return hight*width #这是程序启动函数入口,给要测试的函 ...

  9. Java第四次作业—面向对象高级特性(继承和多态)

    Java第四次作业-面向对象高级特性(继承和多态) (一)学习总结 1.学习使用思维导图对Java面向对象编程的知识点(封装.继承和多态)进行总结. 2.阅读下面程序,分析是否能编译通过?如果不能,说 ...

  10. Jlink 接口定义

    JTAG有10pin的.14pin的和20pin的,尽管引脚数和引脚的排列顺序不同,但是其中有一些引脚是一样的,各个引脚的定义如下. 1. 引脚定义 Test Clock Input (TCK) -- ...