Description

称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值

Input

输入文件的第一行包含两个整数 n和p,含义如上所述。

Output

输出文件中仅包含一个整数,表示计算1,2,⋯, ���的排列中, Magic排列的个数模 p的值。

Sample Input

20 23

Sample Output

16

HINT

100%的数据中,1 ≤ ��� N ≤ 106, P��� ≤ 10^9,p是一个质数。 数据有所加强

如图

把问题转化为

用1--n的数 组成一个完全二叉树使之满足小根堆性质的方案数

考虑dp

设i点的子结点数量为size[i]

则$dp[i]=C(s[i]-1,s[i*2])*f[i*2]*f[i*2+1]$

#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long ll;
ll n,p;
ll dp[],size[],fac[];
ll qpow(ll a,ll b,ll mod)
{
ll res=;
a=a%mod;
while(b)
{
if(b&)res=(res*a)%mod;
b=b>>;
a=(a*a)%mod;
}
return res;
}
ll C(ll x,ll y,ll mod)
{
if(x<y)return ;
return fac[x]*qpow(fac[y],p-,p)%p*qpow(fac[x-y],p-,p)%p;
}
ll lucas(ll x,ll y,ll p)
{
if(!y)return ;
return C(x%p,y%p,p)*lucas(x/p,y/p,p)%p;
}
int main()
{
scanf("%lld%lld",&n,&p);
fac[]=fac[]=;
for(int i=;i<=n;i++)fac[i]=fac[i-]*i%p;
for(int i=n;i;i--)
{
size[i]=size[i<<]+size[i<<|]+;
dp[i]=lucas(size[i]-,size[i<<],p);
if(n>=(i<<))dp[i]=dp[i]*dp[i<<]%p;
if(n>=(i<<|))dp[i]=dp[i]*dp[i<<|]%p;
}
//for(int i=1;i<=n;i++)cout<<dp[i]<<endl;
cout<<dp[]<<endl;
return ;
}

[ZJOI2010]排列计数 题解的更多相关文章

  1. BZOJ2111:[ZJOI2010]排列计数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2111 https://www.luogu.org/problemnew/show/P2606#su ...

  2. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  3. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  4. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  5. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  6. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  7. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  8. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  9. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

随机推荐

  1. K-th Closest Distance

    题目链接 题意:n个数,q次查询,查询[l , r] 内, | a[i] - p | 第k大的数 思路:主席树维护下权值大小,二分答案,查询区间[p - mid, p + mid] 的个数 #incl ...

  2. [CSP-S模拟测试51]题解

    错失人生中第一次AK的机会…… A.attack 支配树板子题.考场上发明成功√ 首先支配树上两点路径之间的点都是必经之点,根据这个性质我们就可以yy出建树的方法.跑拓扑,在每个点(设为$x$)即将入 ...

  3. 探索Redis设计与实现4:Redis内部数据结构详解——ziplist

    本文转自互联网 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial ...

  4. linux kafka进程挂了 自动重启

    使用crontab,定时监控 kafka进程,发现挂了后重启. shell脚本如下: #!/bin/sh source /etc/profile proc_dir="/data/kafka& ...

  5. Eclipse转idea改设置

    1 自动导包:画圈的打钩,实现自动导包,去除无用包.导入的类名相同时需要自己手动导包->  alt+enter. 2:修改快捷键 左移光标,右移同理. 上移光标:下移同理 光标移至行首,行末为e ...

  6. 2019 ACM-ICPC 南京 现场赛 H. Prince and Princess

    题意 王子想要娶公主,但是需要完成一个挑战:在一些房间中找出公主在哪. 每个房间有一个人,他们彼此知道谁在哪个房间.可以问他们三种问题: 你是谁? 在某个房间是谁? 公主在哪个房间? 有三类人,一类一 ...

  7. html5中利用FileReader来读取文件。

    利用FileReader来读取文件的能够来实现即时预览的效果,这个也是在html5中才有的功能. <!DOCTYPE html> <html lang="en"& ...

  8. [已解决]报错: Version in docker-compose is unsupported

    docker compose将解析版本为"2",而不是"3.3".应该改为: version: "2"

  9. Oracle上课学习笔记<1>

    简单的select查询语句 1.select查询语句基本语法 使用两个关键字: select 指定要查询的字段和内容 from 从哪张表中查询 语法:select 字段名 from 表名; 三种不同的 ...

  10. ant的安装和使用

    1.ant的安装 1.1 添加环境变量:ANT_HOME=D:\software\ant\apache-ant-1.10.1 在path中添加:%ANT_HOME%\bin 1.2 测试是否安装成功 ...