题目如下:

Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these points, with sides not necessarily parallel to the x and y axes.

If there isn't any rectangle, return 0.

Example 1:

Input: [[1,2],[2,1],[1,0],[0,1]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [1,2],[2,1],[1,0],[0,1], with an area of 2.

Example 2:

Input: [[0,1],[2,1],[1,1],[1,0],[2,0]]
Output: 1.00000
Explanation: The minimum area rectangle occurs at [1,0],[1,1],[2,1],[2,0], with an area of 1.

Example 3:

Input: [[0,3],[1,2],[3,1],[1,3],[2,1]]
Output: 0
Explanation: There is no possible rectangle to form from these points.

Example 4:

Input: [[3,1],[1,1],[0,1],[2,1],[3,3],[3,2],[0,2],[2,3]]
Output: 2.00000
Explanation: The minimum area rectangle occurs at [2,1],[2,3],[3,3],[3,1], with an area of 2.

Note:

  1. 1 <= points.length <= 50
  2. 0 <= points[i][0] <= 40000
  3. 0 <= points[i][1] <= 40000
  4. All points are distinct.
  5. Answers within 10^-5 of the actual value will be accepted as correct.

解题思路:本题是【leetcode】939. Minimum Area Rectangle 的升级版,由于题目要求矩形不需要和X轴或者Y轴平行,因此我的解法就是简单粗暴。从points中任意取出四个点判断是否是矩形,这样的话时间复杂度是O(n^4),虽然points.length最大只有50,但还是华丽丽的超时。 那就优化吧,我们可以以边为单位,假设两条边要组成矩形平行的边,那么这两条边的长度一定是相同的,所以可以实现把任意两个点组成的边的长度都计算出来,接下来再从长度相同的两条边中判断是否组成矩形,时间复杂度就降为O(n^2)了,和【leetcode】4Sum 的思路非常相似。如果两条边的长度相同,怎么判断是否能组成矩形呢,那就用勾股定理了,取这两条边的任意一点,分别计算出与其他三点的距离,判断是否满足勾股定理。看起来似乎是这样,但是有如下这种情况,红框点到两个绿框点的距离与红框点到蓝框点的距离是满足勾股定理的,但实际上这四个点并没有组成矩形。所以找出了四个点后,不能只判断其中一个点与其他三个点的距离,至少应该取其中两个来做判断(感觉是这样,但我不确定,所以我取了三个点判断),最后求出最小的面积即可。

代码如下:

class Solution(object):
def minAreaFreeRect(self, points):
"""
:type points: List[List[int]]
:rtype: float
"""
def dis(p1, p2):
return (p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2
dic = {}
res = float('inf')
for i in range(len(points)):
for j in range(i+1,len(points)):
d = dis(points[i], points[j])
if d not in dic:
dic[d] = [(i,j)]
else:
dic[d].append((i,j))
for pl in dic.itervalues():
for i in range(len(pl)):
for j in range(i + 1, len(pl)):
if len(set(pl[i]) & set(pl[j])) > 0:
continue
p1,p2,p3,p4 = pl[i][0],pl[i][1],pl[j][0],pl[j][1]
d1 = dis(points[p1], points[p2])
d2 = dis(points[p1], points[p3])
d3 = dis(points[p1], points[p4])
dl = sorted([d1, d2, d3])
if dl[0] + dl[1] != dl[2]:
continue d1 = dis(points[p2], points[p1])
d2 = dis(points[p2], points[p3])
d3 = dis(points[p2], points[p4])
dl = sorted([d1, d2, d3])
if dl[0] + dl[1] != dl[2]:
continue d1 = dis(points[p3], points[p1])
d2 = dis(points[p3], points[p2])
d3 = dis(points[p3], points[p4])
dl = sorted([d1, d2, d3])
if dl[0] + dl[1] != dl[2]:
continue res = min(res, dl[0] * dl[1]) if res == float('inf'):
res = 0
import math
return math.sqrt(res)

【leetcode】963. Minimum Area Rectangle II的更多相关文章

  1. 【LeetCode】963. Minimum Area Rectangle II 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 线段长+线段中心+字典 日期 题目地址:https: ...

  2. 【LeetCode】939. Minimum Area Rectangle 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 确定对角线,找另外两点(4sum) 字典保存出现的x ...

  3. 【leetcode】939. Minimum Area Rectangle

    题目如下: Given a set of points in the xy-plane, determine the minimum area of a rectangle formed from t ...

  4. 963. Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  5. LC 963. Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  6. 【LeetCode】522. Longest Uncommon Subsequence II 解题报告(Python)

    [LeetCode]522. Longest Uncommon Subsequence II 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemin ...

  7. 【LeetCode】452. Minimum Number of Arrows to Burst Balloons 解题报告(Python)

    [LeetCode]452. Minimum Number of Arrows to Burst Balloons 解题报告(Python) 标签(空格分隔): LeetCode 题目地址:https ...

  8. [Swift]LeetCode963. 最小面积矩形 II | Minimum Area Rectangle II

    Given a set of points in the xy-plane, determine the minimum area of any rectangle formed from these ...

  9. 【Leetcode】Pascal&#39;s Triangle II

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3 ...

随机推荐

  1. ivew Upload 上传时附带的额外参数

    <Upload action="/api/device/importData" :data="uploadData" :before-upload=&qu ...

  2. 数据结构---Java---Hastable

    1.概述 1.1 Hashtable是线程安全的: 1.2 源码 public class Hashtable<K,V> extends Dictionary<K,V> imp ...

  3. 理解Java的Class类、"this."关键字、Constructor构造器(一)

    import java.util.*; public class BookTest { public static void main(String[] args) { //Book book = n ...

  4. Java8 使用stream 实现wordcount

    案例: public static void main(String[] args) { List<String> items = Arrays.asList("apple&qu ...

  5. 【网络】Vmware虚拟机下三种网络模式配置

    VMware虚拟机有三种网络模式,分别是Bridged(桥接模式).NAT(网络地址转换模式).Host-only(主机模式). VMware workstation安装好之后会多出两个网络连接,分别 ...

  6. 如何在cmd中启动MongoDB服务器和客户端

    1 先将MongoDB的bin路径添加到环境变量中 2 打开cmd输入mongod 开启MongoDB服务器 3 输入mongo开启MongoDB客户端

  7. windows环境下安装pymysql(操作带图)

    在windows环境下安装pymysql,首先要找到python的安装位置,如果在c盘,启动cmd的时候,要获取管理员权限. 具体步骤,一,管理员模式启动cmd.在箭头指定位置,搜索cmd,出现快捷方 ...

  8. python locust-事件顺序

    from locust import HttpLocust,TaskSet,task ''' 点击STOP,会停止测试,并调用所有当前执行的TaskSet的on_stop,但不会调用teardown函 ...

  9. react 中使用 JsBarcode 显示条形码

    import React from 'react';import JsBarcode from 'jsbarcode'; export class RefundSheet extends React. ...

  10. java 实现一套流程管理、流转的思路(伪工作流) 【仅供参考】

    转: java 实现一套流程管理.流转的思路(伪工作流) 在做某个管理项目时,被要求实现一套流程管理,比如请假的申请审批流程等,在参考了很多资料,并和同事讨论后,得到了一个自主实现的流程管理. 以下提 ...