HDU6715 算术

莫比乌斯反演的变形。

对 \(\mu(lcm(i,j))\) 变换,易得 \(\mu(lcm(i,j)) = \mu(i)\cdot\mu(j)\cdot \mu(gcd(i,j))\) 。那么有:

\[\begin{split}
\sum_{i=1}^{n} \sum_{j=1}^{m} \mu(lcm(i,j)) &= \sum_{i=1}^{n}\mu(i) \sum_{j=1}^{m}\mu(j)\cdot \mu(gcd(i,j)) \\
&= \sum_{d=1}^{\min(n,m)}\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}\mu(id)\mu(jd)\mu(d)[gcd(i,j)=1]
\end{split}\]

由于莫比乌斯函数的性质 \(\sum_{d\ |\ n}\mu(d)=[n=1]\) ,我们有:

\[\begin{split}
\text{上式} = \sum_{d=1}^{\min(n,m)}\sum_{d_1 = 1}^{\min(n,m)/d}\sum_{i=1}^{n/dd_1}\sum_{j=1}^{m/dd_1}\mu(idd_1)\mu(jdd_1)\mu(d)\mu(d_1)
\end{split}\]

我们令 \(T = dd_1\) ,有:

\[\text{上式}=\sum_{T=1}^{\min(n,m)}\sum_{d|T}\sum_{i=1}^{n/T}\sum_{j=1}^{m/T}\mu(iT)\mu(jT)\mu(d)\mu(T/d)
\]

令 \(f(T) = \sum_{d|T} \mu(d)\mu(T/d)\) 。

令 \(g(T,N,M)=\sum_{i=1}^{N}\sum_{j=1}^{M}\mu(iT)\mu(jT)=(\sum_{i=1}^{N}\mu(iT))\cdot(\sum_{j=1}^{M}\mu(jT))\) 。

那么我们有:

\[\text{上式}=\sum_{T=1}^{\min(n,m)} f(T)\cdot g(T,n/T,m/T)
\]

\(g(T,n/T,m/T)\) 可以在 \(O(n/T+m/T)\) 的时间内计算。

时间复杂度为 \(O(n\log n)\) 。

#include<stdio.h>
#include<algorithm> using namespace std; const int maxn = 1000005; int t, n, m, tot;
int mu[maxn], check[maxn], prime[maxn];
long long ans, f[maxn]; void init()
{
mu[1] = 1; tot = 0;
for(int i = 2; i <= 1000000; i++){
if(check[i] == 0){
mu[i] = -1;
prime[++tot] = i;
}
for(int j = 1; j <= tot && prime[j] * i <= 1000000; j++){
check[i * prime[j]] = 1;
if(i % prime[j] == 0) break;
mu[i * prime[j]] = -1 * mu[i];
}
}
for(int i = 1; i <= 1000000; i++){
for(int j = 1; j * i <= 1000000; j++){
f[i * j] += mu[i] * mu[j];
}
}
}
int main()
{
init();
for(scanf("%d", &t); t--;){
scanf("%d%d", &n, &m);
ans = 0;
for(int T = 1; T <= min(n, m); T++){
if(f[T]){
long long g1 = 0, g2 = 0;
for(int i = 1; i * T <= n; i++) g1 += mu[i * T];
for(int i = 1; i * T <= m; i++) g2 += mu[i * T];
ans += f[T] * g1 * g2;
}
}
printf("%lld\n", ans);
}
return 0;
}

HDU6715 算术(莫比乌斯反演)的更多相关文章

  1. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  2. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  5. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  6. 【BZOJ-2440】完全平方数 容斥原理 + 线性筛莫比乌斯反演函数 + 二分判定

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2371  Solved: 1143[Submit][Sta ...

  7. POI2007_zap 莫比乌斯反演

    题意:http://hzwer.com/4205.html 同hdu1695 #include <iostream> #include <cstring> #include & ...

  8. hdu.5212.Code(莫比乌斯反演 && 埃氏筛)

    Code Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  9. CSU 1325 莫比乌斯反演

    题目大意: 一.有多少个有序数对(x,y)满足1<=x<=A,1<=y<=B,并且gcd(x,y)为p的一个约数: 二.有多少个有序数对(x,y)满足1<=x<=A ...

随机推荐

  1. vue element 导出 分页数据的excel表格

    1.安装相关依赖 npm install --save xlsx file-saver 2.导入相关插件 在组建头部导入相关插件 const FileSaver = require("fil ...

  2. GUI自动化测试中优化测试用例思维方法

    1.测试脚本与数据解耦(数据驱动) 让操作相同但是数据不同的测试可以通过同一 套自动化测试脚本来实现,只是在每次测试执行时提供不同的测试输入数据. 2.页面对象模型(POM) 以页面为单位来封装页面上 ...

  3. String.Net “System.TypeInitializationException”类型的未经处理的异常在 Spring.NetDemo.exe 中发生

    今天编写String.Net时,遇到“System.TypeInitializationException”类型的未经处理的异常在 Spring.NetDemo.exe 中发生 原因配置文件的顺序写错 ...

  4. jquery遍历标签中自定义的属性方法

    在开发中我们有时会对html标签添加属性,如何遍历处理 <ul> <li name="li1" sortid="nav_1">aaaaa ...

  5. 电子邮件协议:SMTP、POP3、IMAP4

    常见的电子邮件协议:SMTP.POP3.IMAP4   邮件发送协议:SMTP协议 邮件读取协议:POP3.IMAP4协议   SMTP协议(simple mail transfer protocol ...

  6. 关于jsp 获得当前绝对路径的方法

    方法1) request.getRequestURL(); 方法2)  request.getScheme()+"://"+request.getServerName()+&quo ...

  7. 1126. Eulerian Path (25)

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  8. Netty学习第四章 spring boot整合netty的使用

    现在大多数项目都是基于spring boot进行开发,所以我们以spring boot作为开发框架来使用netty.使用spring boot的一个好处就是能给将netty的业务拆分出来,并通过spr ...

  9. Flutter-使用Dialog時出現No MaterialLocalizations found

    在显示SimpleDialog时候程序报错 No MaterialLocalizations found 没有找到 MaterialLocalizations 搜索找到原因 runApp 需要先调用 ...

  10. lambda匿名函数sorted排序函数filter过滤函数map映射函数

    lambda函数:表示匿名函数,不需要def来声明,一句话就能搞定. 语法:函数名=lamda 参数:返回值 求10的10次方 f=lambda n:n**n print(f(10)) 注意: 函数名 ...