51 Nod 1242 矩阵快速幂求斐波那契数列
#include<bits/stdc++.h>
#define mod 1000000009
using namespace std;
typedef long long ll;
typedef long long LL;
struct Mat
{
LL mat[3][3];
Mat()
{
memset(mat,0,sizeof(mat));
}
LL* operator [](int x) //注意这种写法
{
return mat[x];
}
} A;
Mat Mut(Mat a,Mat b)
{
Mat c;
for(int k=0; k<3; k++)
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
{
c[i][j]+=a[i][k]*b[k][j]%mod;
c[i][j]=c[i][j]%mod;
}
return c;
}
Mat Qpow(Mat a,LL n)
{
Mat c;
for(int i=0; i<3; ++i)
c[i][i]=1;
for(; n; n>>=1)
{
if(n&1) c=Mut(c,a);
a=Mut(a,a);
}
return c;
}
ll hh[3][3]={{1,1,0},{0,1,1},{0,1,0}};
int main()
{
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
A.mat[i][j]=hh[i][j];
ll n;
cin>>n;
if(n==0){cout<<0<<endl;return 0;}
if(n==1){cout<<1<<endl;return 0;}
if(n==2){cout<<1<<endl;return 0;}
if(n==3){cout<<2<<endl;return 0;}
A=Qpow(A,n-3);
ll ans=((A.mat[0][0]*2%mod+A.mat[0][1])%mod+A.mat[0][2])%mod;
cout<<ans<<endl;
return 0;
}
51 Nod 1242 矩阵快速幂求斐波那契数列的更多相关文章
- poj3070矩阵快速幂求斐波那契数列
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13172 Accepted: 9368 Desc ...
- codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质
E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...
- 矩阵快速幂--51nod-1242斐波那契数列的第N项
斐波那契额数列的第N项 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, ...
- UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)
题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...
- 矩阵快速幂 求斐波那契第N项
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> us ...
- python 快速幂求斐波那契数列
先占坑 后面再写详细的 import numpy as np def pow(n): a = np.array([[1,0],[0,1]]) b = np.array([[1,1],[1,0]]) n ...
- codeforces gym #101161G - Binary Strings(矩阵快速幂,前缀斐波那契)
题目链接: http://codeforces.com/gym/101161/attachments 题意: $T$组数据 每组数据包含$L,R,K$ 计算$\sum_{k|n}^{}F(n)$ 定义 ...
- POJ 3070 - 快速矩阵幂求斐波纳契数列
这题并不复杂. 设$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 由题中公式: $\begin{pmatrix}f(n+1) & ...
- 【poj3070】矩阵乘法求斐波那契数列
[题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...
随机推荐
- [Python3] 040 文件 一般使用
目录 文件 1. open 函数 2. with 语句 3. 先写再读 3.1 写 3.2 读 4. "位置"的查询与移动 4.1 tell() 4.2 seek(cookie, ...
- PTA(Basic Level)1023.组个最小数
给定数字 0-9 各若干个.你可以以任意顺序排列这些数字,但必须全部使用.目标是使得最后得到的数尽可能小(注意 0 不能做首位).例如:给定两个 0,两个 1,三个 5,一个 8,我们得到的最小的数就 ...
- 小菜鸟之java JDBC编程
JDBC技术 百度简介 : JDBC(Java Data Base Connectivity,java数据库连接)是一种用于执行SQL语句的Java API,可以为多种关系数据库提供统一访问,它由一 ...
- 安装破解MyEclipse2017CI
一.下载 1.Myeclipse官网下载地址:http://www.myeclipsecn.com/download/ 2.破解补丁链接:https://pan.baidu.com/s/1Ge_fbm ...
- 坦克大战--Java类型 ---- (2)按键设置和用户名的输入
一.实现思路(emmmm,这个地方我很大程度参照了别人的写法) 由于键盘按键众多,因此使用选择框JComboBox 进行按键选择,点击一个JButton 按钮后,读取所有选择框中的内容,然后存到一 ...
- vc_redist x64 或者x86下载地址
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads 微软的东西,果然还是人 ...
- Spring Cloud netflix 概览和架构设计
pring Cloud是基于Spring Boot的一整套实现微服务的框架.他提供了微服务开发所需的配置管理.服务发现.断路器.智能路由.微代理.控制总线.全局锁.决策竞选.分布式会话和集群状态管理等 ...
- eclipse导入myeclipse中的项目(如何把Webroot改为WebContent)
1.进入项目目录,找到.project文件,打开. 2.找到…代码段. 3.在第2步的代码段中加入如下标签内容并保存: org.eclipse.wst.common.project.facet.cor ...
- 基于Zabbix 3.2.6版本的low-level-discover(lld)
个人使用理解: 1.使用一个返回值是JSON的KEY,在Templates或者Hosts中创建一个Discovery规则.该key的返回值类似于: 索引key -- value 类型 ...
- Java的clone方法
现在有User类:(Getter和Setter省略) public class User implements Cloneable { private String name; private int ...