51 Nod 1242 矩阵快速幂求斐波那契数列
#include<bits/stdc++.h>
#define mod 1000000009
using namespace std;
typedef long long ll;
typedef long long LL;
struct Mat
{
LL mat[3][3];
Mat()
{
memset(mat,0,sizeof(mat));
}
LL* operator [](int x) //注意这种写法
{
return mat[x];
}
} A;
Mat Mut(Mat a,Mat b)
{
Mat c;
for(int k=0; k<3; k++)
for(int i=0; i<3; i++)
for(int j=0; j<3; j++)
{
c[i][j]+=a[i][k]*b[k][j]%mod;
c[i][j]=c[i][j]%mod;
}
return c;
}
Mat Qpow(Mat a,LL n)
{
Mat c;
for(int i=0; i<3; ++i)
c[i][i]=1;
for(; n; n>>=1)
{
if(n&1) c=Mut(c,a);
a=Mut(a,a);
}
return c;
}
ll hh[3][3]={{1,1,0},{0,1,1},{0,1,0}};
int main()
{
for(int i=0;i<3;i++)
for(int j=0;j<3;j++)
A.mat[i][j]=hh[i][j];
ll n;
cin>>n;
if(n==0){cout<<0<<endl;return 0;}
if(n==1){cout<<1<<endl;return 0;}
if(n==2){cout<<1<<endl;return 0;}
if(n==3){cout<<2<<endl;return 0;}
A=Qpow(A,n-3);
ll ans=((A.mat[0][0]*2%mod+A.mat[0][1])%mod+A.mat[0][2])%mod;
cout<<ans<<endl;
return 0;
}
51 Nod 1242 矩阵快速幂求斐波那契数列的更多相关文章
- poj3070矩阵快速幂求斐波那契数列
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13172 Accepted: 9368 Desc ...
- codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质
E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...
- 矩阵快速幂--51nod-1242斐波那契数列的第N项
斐波那契额数列的第N项 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, ...
- UVA - 10689 Yet another Number Sequence (矩阵快速幂求斐波那契)
题意:已知f(0) = a,f(1) = b,f(n) = f(n − 1) + f(n − 2), n > 1,求f(n)的后m位数. 分析:n最大为109,矩阵快速幂求解,复杂度log2(1 ...
- 矩阵快速幂 求斐波那契第N项
#include<cstdio> #include<algorithm> #include<cstring> #include<iostream> us ...
- python 快速幂求斐波那契数列
先占坑 后面再写详细的 import numpy as np def pow(n): a = np.array([[1,0],[0,1]]) b = np.array([[1,1],[1,0]]) n ...
- codeforces gym #101161G - Binary Strings(矩阵快速幂,前缀斐波那契)
题目链接: http://codeforces.com/gym/101161/attachments 题意: $T$组数据 每组数据包含$L,R,K$ 计算$\sum_{k|n}^{}F(n)$ 定义 ...
- POJ 3070 - 快速矩阵幂求斐波纳契数列
这题并不复杂. 设$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 由题中公式: $\begin{pmatrix}f(n+1) & ...
- 【poj3070】矩阵乘法求斐波那契数列
[题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...
随机推荐
- Java 虚拟机的运行模式
这几天在读周志明老师的<深入理解JVM虚拟机> 讲到了 java的运行模式, 有mixed 模式 interpret模式还有compile模式.效果如下面所示 java -version ...
- [转帖]Java 8新特性探究(九)跟OOM:Permgen说再见吧
Java 8新特性探究(九)跟OOM:Permgen说再见吧 https://my.oschina.net/benhaile/blog/214159 need study 很多开发者都在其系统中见过“ ...
- mysql事件(event)
[小结]简单案例 SET GLOBAL event_scheduler=1delimiter $$ create definer = current_user event `test`.`event_ ...
- 在Ubuntu上安装Hive
1.下载hive2.3.5 解压缩并改名为hive目录,放到/usr/local下(注意权限) sudo mv apache-hive-2.3.5-bin /usr/local/hive 2.修改目录 ...
- Springboot提示数据库连接问题Connection is not available
2019-05-29 11:19:51.824 WARN 854 --- [io-8080-exec-10] o.h.engine.jdbc.spi.SqlExceptionHelper : SQL ...
- Codeforces 1178D. Prime Graph
传送门 首先每个点至少要有两条边连接 那么容易想到先保证这一点然后再慢慢加边 那么先构成一个环即可:$(1,2),(2,3),(3,4)...(n,1)$ 然后考虑加边,发现一个点加一条边还是合法的, ...
- 剑指offer-扑克牌顺子-知识迁移能力-python
题目描述 LL今天心情特别好,因为他去买了一副扑克牌,发现里面居然有2个大王,2个小王(一副牌原本是54张^_^)...他随机从中抽出了5张牌,想测测自己的手气,看看能不能抽到顺子,如果抽到的话,他决 ...
- c# 转换Image为Icon
/// <summary> /// 转换Image为Icon /// </summary> /// <param name="image">要转 ...
- vue运行碰到的问题
Expected indentation of 0 spaces but found 2 解决方案: 文件中加入"indent": ["off", 2]就可以了 ...
- Freemarker生成word文档的时的一些&,>,<报错
替换模板ftl中的内容的时候,一些特殊的字符需要转移,例如: &,<,> value为字符串 value.replace("&","& ...