AcWing 107. 超快速排序(归并排序 + 逆序对 or 树状数组)
在这个问题中,您必须分析特定的排序算法----超快速排序。
该算法通过交换两个相邻的序列元素来处理n个不同整数的序列,直到序列按升序排序。
对于输入序列9 1 0 5 4,超快速排序生成输出0 1 4 5 9。
您的任务是确定超快速排序需要执行多少交换操作才能对给定的输入序列进行排序。
输入格式
输入包括一些测试用例。
每个测试用例的第一行输入整数n,代表该用例中输入序列的长度。
接下来n行每行输入一个整数aiai,代表用例中输入序列的具体数据,第i行的数据代表序列中第i个数。
当输入用例中包含的输入序列长度为0时,输入终止,该序列无需处理。
输出格式
对于每个需要处理的输入序列,输出一个整数op,代表对给定输入序列进行排序所需的最小交换操作数,每个整数占一行。
数据范围
0≤N<5000000≤N<500000,
0≤ai≤9999999990≤ai≤999999999
输入样例:
5
9
1
0
5
4
3
1
2
3
0
输出样例:
6
0
算法:归并排序 + 逆序对 or 树状数组
题解:求最少的交换次数,其实就是求当前这个序列的逆序数。
归并排序 + 逆序对:
#include <iostream>
#include <cstdio> using namespace std; typedef long long ll; const int maxn = 5e5+; ll arr[maxn], b[maxn];
ll ans; void merge_sort(ll *arr, int l, int mid, int r) {
int i = l, j = mid + ;
int k = ;
while(i <= mid || j <= r) {
if(j > r || (i <= mid && arr[i] <= arr[j])) {
b[k++] = arr[i++];
} else {
ans += mid - i + ;
b[k++] = arr[j++];
}
}
for(int i = ; i < k; i++) {
arr[l + i] = b[i];
}
} void merge(ll *arr, int l, int r) {
if(l < r) {
int mid = (l + r) >> ;
merge(arr, l, mid);
merge(arr, mid + , r);
merge_sort(arr, l, mid, r);
}
} int main() {
int n;
while(scanf("%d", &n) && n) {
for(int i = ; i <= n; i++) {
scanf("%lld", &arr[i]);
}
ans = ;
merge(arr, , n);
cout << ans << endl;
}
return ;
}
树状数组:
#include <iostream>
#include <cstdio>
#include <memory.h>
#include <vector>
#include <algorithm> using namespace std; typedef long long ll; const int maxn = 5e5+; vector<int> v; int arr[maxn];
ll tree[maxn << ];
int size; int lowbit(int x) {
return x & (-x);
} int find(int x) {
return lower_bound(v.begin(), v.end(), x) - v.begin() + ;
} void update(int x, int val) {
while(x <= size) {
tree[x] += val;
x += lowbit(x);
}
} ll getSum(int x) { //求出前面有多少个小于或等于x的数
ll res = ;
while(x > ) {
res += tree[x];
x -= lowbit(x);
}
return res;
} int main() {
int n;
while(scanf("%d", &n) && n) {
memset(tree, , sizeof tree);
for(int i = ; i <= n; i++) {
scanf("%d", &arr[i]);
v.push_back(arr[i]);
}
sort(v.begin(), v.end());
v.erase(unique(v.begin(), v.end()), v.end());
size = v.size();
ll ans = ;
for(int i = ; i <= n; i++) {
update(find(arr[i]), );
ans += i - getSum(find(arr[i])); //用总数减去小于或等于arr[i]的数,就是当前这个数的逆序数
}
cout << ans << endl;
}
return ;
}
AcWing 107. 超快速排序(归并排序 + 逆序对 or 树状数组)的更多相关文章
- Day2:T4求逆序对(树状数组+归并排序)
T4: 求逆序对 A[I]为前缀和 推导 (A[J]-A[I])/(J-I)>=M A[j]-A[I]>=M(J-I) A[J]-M*J>=A[I]-M*I 设B[]=A[]-M*( ...
- hdu 4911 求逆序对数+树状数组
http://acm.hdu.edu.cn/showproblem.php?pid=4911 给定一个序列,有k次机会交换相邻两个位置的数,问说最后序列的逆序对数最少为多少. 实际上每交换一次能且只能 ...
- 【BZOJ 3295】动态逆序对 - 分块+树状数组
题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...
- Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2886 Solved: 924[Submit][Stat ...
- bzoj1831 逆序对 (dp+树状数组)
注意到,所有的-1应该是一个不降的序列,否则不会更优那就先求出来不是-1的的逆序对个数,然后设f[i][j]表示第i个-1放成j的前i个-1带来的最小逆序对数量这个可以树状数组来求 #include& ...
- P3157 [CQOI2011]动态逆序对(树状数组套线段树)
P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...
- POJ2299逆序对模板(树状数组)
题目:http://poj.org/problem?id=2299 只能相邻两个交换,所以交换一次只会减少一个逆序对.所以交换次数就是逆序对数. ps:原来树状数组还可以记录后边lowbit位的部分和 ...
- 【Luogu】P3157动态逆序对(树状数组套主席树)
题目链接 md第一道在NOILinux 下用vim做的紫题.由于我对这个操作系统不是很熟悉,似乎有什么地方搞错了,md调死.(我还打了两遍代码,调了两个小时) 但是这道题并不难,就是树状数组套上主席树 ...
- BZOJ3295 动态逆序对(树状数组套线段树)
[Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6058 Solved: 2117[Submit][Status][D ...
随机推荐
- 搞懂Redis复制原理
前言 与大多数db一样,Redis也提供了复制机制,以满足故障恢复和负载均衡等需求.复制也是Redis高可用的基础,哨兵和集群都是建立在复制基础上实现高可用的.复制不仅提高了整个系统的容错能力,还可以 ...
- 分布式的几件小事(五)dubbo的spi思想是什么
1.什么是SPI机制 SPI 全称为 Service Provider Interface,是一种服务发现机制. SPI 的本质是将接口实现类的全限定名配置在文件中,并由服务加载器读取配置文件,加载实 ...
- 主流浏览器内核(IE、Chrome、Firefox、Safari、Opera)
IE浏览器,使用Trident浏览器内核,又称为IE内核.只用于Windows平台,而且并不是开源的: chrome浏览器,目前使用的是Blink浏览器内核.浏览器内核的演进过程:Chromium ...
- Visual Studio (VC) Win32 程序由于数据大,内存溢出怎么办?
Visual Studio (VC) 内编写的Win32 程序由于数据大,内存溢出,即使转移到64位系统也不行.在国外网站上找到了答案. 原来,只需在project->property中的Lin ...
- 第十篇.4、python并发编程之多线程
一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 官网链接:https://docs.python ...
- 微软内部封杀 Slack
就在 Slack 在股市上亮相之际,有一家大公司却不允许员工在日常工作中使用这款企业协作和聊天应用软件. 微软已禁止其 100000 多名员工使用免费版 Slack.IT 外媒 GeekWire 报道 ...
- IO模型(epoll)--详解-01
写在前面 从事服务端开发,少不了要接触网络编程.epoll作为linux下高性能网络服务器的必备技术至关重要,nginx.redis.skynet和大部分游戏服务器都使用到这一多路复用技术. 本文会从 ...
- oracle修改某个表的字段顺序
有时候会发现某个表的列顺序不理想,想修改 -1查询表, select * from AIRWAY_TYPE t --2 查询用户和表名,找到obj#,select object_id from all ...
- Restricting Input in HTML Textboxes to Numeric Values
Ok, here’s a fairly basic one – how to force a textbox to accept only numeric input. Somebody asked ...
- local_time
time_t time(time_t *tloc); 功能:获取纪元1970-01-01 00:00:00以来所经历的秒数 参数: tloc:用来存储返回时间 返回值:成功:返回秒数, 失败:-1 - ...