如题。$N \leqslant 5000$。


感觉自己思路永远都是弯弯绕绕的。。即使会做也会被做繁掉。。果然还是我太菜了。


递减不爽,先倒序输入算了。第一问做个LIS没什么说的。第二问统计个数,考虑什么时候是重复计算的。$g[i]$表示第$i$个数结尾的LIS长度的方案(不重复)。当统计时dp到一个数时显然从前面满足$f_j+1=f_i且A_j<A_i$条件的累加过来,$A_j$不同的时候,自然不会有重复;当有相同的数且f一样时,如果这几种都加入,就重复了。而相同的几个数字显然靠后的方案统计到的更多,所以每次只取最靠右的那个数累加上去即可。实现上,开一个桶,记录vis,结束后再吐出来。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define _dbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=<<,INF=0x3f3f3f3f;
int f[N],g[N],lis[N],a[N],vis[M],bin[N];
int n,len,ans,tot,cnt; int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(n);for(register int i=;i<=n;++i)read(a[n-i+]);
lis[len=]=INF;
for(register int i=;i<=n;++i){
f[i]=lower_bound(lis+,lis+len+,a[i])-lis;
if(f[i]>len)lis[++len]=a[i];else lis[f[i]]=a[i];
MAX(ans,f[i]);
}
for(register int i=;i<=n;++i){
if(f[i]==){g[i]=;continue;}
for(register int j=i-;j;--j)if(!vis[a[j]]&&a[j]<a[i]&&f[j]+==f[i])vis[bin[++tot]=a[j]]=,g[i]+=g[j];
while(tot)vis[bin[tot--]]=;
}
for(register int i=n;i;--i) if(!vis[a[i]]&&f[i]==ans)cnt+=g[i],vis[a[i]]=;
printf("%d %d\n",ans,cnt);
return ;
}

嗯这个是本人极其繁琐的想法。发现自己傻了有没有。。而且数据大的话桶不就挂了吗。。所以依据原来思路,改变对于dp状态的定义。$g[i]$表示第$i$个数结尾的长度为LIS的方案数,且不包括之前所有和自己相同且$len_{LIS}$相同的数的方案。这样每次转移时遇到相同即break。保证取的决策一定来源于上一个相同数和现在这个数之间。具体还是看code吧。。

另外还有一种做法是网络流。。不想写了QwQ。  ←不行,建边都会建炸掉

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define _dbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+,M=<<,INF=0x3f3f3f3f;
int f[N],g[N],lis[N],a[N];
int n,len,ans,tot,cnt; int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
read(n);for(register int i=;i<=n;++i)read(a[n-i+]);
lis[len=]=INF;
for(register int i=;i<=n;++i){
f[i]=lower_bound(lis+,lis+len+,a[i])-lis;
if(f[i]>len)lis[++len]=a[i];else lis[f[i]]=a[i];
MAX(ans,f[i]);
}
g[]=;
for(register int i=;i<=n;++i){
for(register int j=i-;~j;--j){
if(a[i]==a[j]&&f[i]==f[j])break;
if(f[i]==f[j]+&&a[j]<a[i])g[i]+=g[j];
}
}
for(register int i=;i<=n;++i)if(f[i]==ans)cnt+=g[i];
printf("%d %d\n",ans,cnt);
return ;
}

poj1952 BUY LOW, BUY LOWER[线性DP(统计不重复LIS方案)]的更多相关文章

  1. poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】

    BUY LOW, BUY LOWER Time Limit: 1000MS   Memory Limit: 30000K Total Submissions:11148   Accepted: 392 ...

  2. POJ-1952 BUY LOW, BUY LOWER(线性DP)

    BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...

  3. [POJ1952]BUY LOW, BUY LOWER

    题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...

  4. USACO Section 4.3 Buy low,Buy lower(LIS)

    第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...

  5. 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower

    P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...

  6. POJ 1952 BUY LOW, BUY LOWER 动态规划题解

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

  7. Buy Low, Buy Lower

    Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...

  8. USACO 4.3 Buy Low, Buy Lower

    Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...

  9. BUY LOW, BUY LOWER_最长下降子序列

    Description The advice to "buy low" is half the formula to success in the bovine stock mar ...

随机推荐

  1. PJzhang:国外主流站点钓鱼网站示例工具shellphish

    猫宁!!! 参考链接:https://www.uedbox.com/post/58583/ 这个是这个项目的github地址 https://github.com/thelinuxchoice/she ...

  2. ORACLE 左连接 右连接 内连接 外连接 全连接 五中表连接方式

    1.左连接 :left join 2.右连接:right join 3.内连接:inner join 4.外连接:outer join 5.全连接:full join

  3. jmeter-ERROR o.a.j.p.j.c.DataSourceElement: JDBC data source already defined for: 报错原因

    转载自:https://www.cnblogs.com/zhangfeivip/p/9450403.html Jmeter 多个threadgroup 中的配置元件会一次性进行初始化   例如3个th ...

  4. ZooKeeper常用命令行操作

    ZooKeeper常用命令行操作 通过./zkCli.sh 打开zk的客户端进入命令行后台 ls/ls2 列出当前节点下的子节点 ls2还会列出当前节点的状态 [zk: localhost:2181( ...

  5. Go语言中的数组(九)

    我刚接触go语言的数组时,有点不习惯,因为相对于JavaScript这样的动态语言里的数组,go语言的数组写起来有点不爽. 定义数组 go语言定义数组的格式如下: ]int var 数组名 [数组长度 ...

  6. %300为0的个数(牛客第四场)-- number

    题意: 给你一串数,问你如题. 思路: 我不是这样的作法,从后往前,先取00,再算%3==0的个数,往前推的时候有递推关系: #define IOS ios_base::sync_with_stdio ...

  7. thinkphp6下无法获取header头中的Authorization(apache版)

    今天遇到在thinkphp框架中获取不到header头里边的 Authorization ,后来在.htaccess里面加多一项解决,记录下: <IfModule mod_rewrite.c&g ...

  8. win10自带虚拟机的使用(Hyper-v)

    昨天刚发现的觉得特别好用,故推荐一下,跟VM虚拟机的使用方法是一样的 1.点击开始菜单中的<设置>图标,进入设置页码 2.点击<应用>图标,进入应用页码,并找到程序和功能 3. ...

  9. TCP/IP 协议是如何保证数据可靠性的?

    原文: 网络基础:TCP协议-如何保证传输可靠性 TCP协议传输的特点主要就是面向字节流.传输可靠.面向连接.这篇博客,我们就重点讨论一下TCP协议如何确保传输的可靠性的. 确保传输可靠性的方式TCP ...

  10. springboot2.X版本得@Transactional注解事务不回滚不起作用

    参考文章  https://my.oschina.net/happyBKs/blog/1624482   https://blog.csdn.net/u011410529/article/detail ...