Nunmpy数组包含:

  • 强大的N维数组对象

  • 复杂的(广播)功能

  • 集成C / C ++和Fortran代码的工具

  • 有用的线性代数,傅立叶变换和随机数功能

遍历与修改数组中的所有像素点

 #对所有像素进行循环
def access_pixels(image):
print(image.shape)
height = image.shape[0] #高度
width = image.shape[1] #宽度
channels = image.shape[2] #通道数
print("width : %s, height : %s, channels : %s"%(width, height, channels))
for row in range(height): #循环获取每一个像素点
for col in range(width):
for c in range(channels):
pv = image[row, col, c] #维度
image[row, col, c] = 255 - pv
cv.imshow("pixels_demo",image)

创建新图像

创建新图像:

 np.zeros([400, 400, 3], np.uint8)        #形状、类型

代码:

 #通过Numpy对一个数组指定维数赋值
def create_image():
'''
#(创建一个新三通道的图像)
#多通道常见为RGB图像
# img = np.zeros([400, 400, 3], np.uint8)
# img[: ,: ,0] = np.ones([400, 400])*255 #0表示第一通道Blue;1表示第二通道Green;3表示第三通道Read #单通道常见为灰度图像
# img = np.zeros([400, 400, 1], np.uint8) #创建新的图像
# img[:, :, 0] = np.ones([400, 400]) * 127
img = np.ones([400, 400, 1], np.uint8)
img =img*127
cv.imshow("new image", img) #窗口显示
cv.imwrite("C:/Users/shinelon/Desktop/DL/001.png") #将图像保存
''' #初始化二维,打印像素点
m1 = np.ones([3, 3], np.float32)
m1.fill(222.388)
print(m1) m2 = m1.reshape([1,9]) #改变其在空间的形状
print(m2)

其他知识点

获取当前CPU时钟:

 t1 = cv.getTickCount()                  #获取当前CPU时间

完整代码

 import cv2 as cv
import numpy as np #对所有像素进行循环;解释执行速度较慢
def access_pixels(image):
print(image.shape)
height = image.shape[0] #高度
width = image.shape[1] #宽度
channels = image.shape[2] #通道数
print("width : %s, height : %s, channels : %s"%(width, height, channels))
for row in range(height): #循环获取每一个像素点
for col in range(width):
for c in range(channels):
pv = image[row, col, c] #维度
image[row, col, c] = 255 - pv
cv.imshow("pixels_demo",image) def inverse(image):
dest = cv.bitwise_not(image) #像素取反,依靠C的代码
cv.imshow("inverse",dest) #通过Numpy对一个数组指定维数赋值
def create_image():
'''
#(创建一个新三通道的图像)
#多通道常见为RGB图像
# img = np.zeros([400, 400, 3], np.uint8)
# img[: ,: ,0] = np.ones([400, 400])*255 #0表示第一通道Blue;1表示第二通道Green;3表示第三通道Read #单通道常见为灰度图像
# img = np.zeros([400, 400, 1], np.uint8) #创建新的图像
# img[:, :, 0] = np.ones([400, 400]) * 127
img = np.ones([400, 400, 1], np.uint8)
img =img*127
cv.imshow("new image", img) #窗口显示
cv.imwrite("C:/Users/shinelon/Desktop/DL/001.png") #将图像保存
''' #初始化二维,打印像素点
m1 = np.ones([3, 3], np.float32)
m1.fill(222.388)
print(m1) m2 = m1.reshape([1,9]) #改变其在空间的形状
print(m2) m3 = np.array([[2, 3, 4], [4, 5, 6], [7, 8, 9]], np.int32) #卷积神经需要
#m3.fill(9)
print(m3) print("------Python OpenCV Tutorial-----")
src = cv.imread("C:/Users/shinelon/Desktop/DL/12.png") #括号类为图片的绝对路径
cv.namedWindow("input image",cv.WINDOW_AUTOSIZE)
cv.imshow("input image",src) #将图片在Windows窗口显示
t1 = cv.getTickCount() #获取当前CPU时间
create_image()
#access_pixels(src) #时间比较长
inverse(src) #优化,时间较短
t2 = cv.getTickCount()
time = (t2 - t1)/cv.getTickFrequency() #运行的时间ms
print("time : %s ms"%(time*1000))
cv.waitKey(0) cv.destroyAllWindows()

OpenCV-----Numpy数组的更多相关文章

  1. Python图像处理丨OpenCV+Numpy库读取与修改像素

    摘要:本篇文章主要讲解 OpenCV+Numpy 图像处理基础知识,包括读取像素和修改像素. 本文分享自华为云社区<[Python图像处理] 二.OpenCV+Numpy库读取与修改像素> ...

  2. numpy数组的操作

    numpy - 介绍.基本数据类型.多维数组ndarray及其内建函数 http://blog.csdn.net/pipisorry/article/details/22107553 http://w ...

  3. numpy数组、向量、矩阵运算

    可以来我的Github看原文,欢迎交流. https://github.com/AsuraDong/Blog/blob/master/Articles/%E6%9C%BA%E5%99%A8%E5%AD ...

  4. Numpy数组对象的操作-索引机制、切片和迭代方法

    前几篇博文我写了数组创建和数据运算,现在我们就来看一下数组对象的操作方法.使用索引和切片的方法选择元素,还有如何数组的迭代方法. 一.索引机制 1.一维数组 In [1]: a = np.arange ...

  5. 操作 numpy 数组的常用函数

    操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, ...

  6. NumPy 超详细教程(1):NumPy 数组

    系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:n ...

  7. NumPy数组对象

    1.创建NumPy数组 import numpy as np # 创建3*2*4的三维数组 a = np.arange(24).reshape(3, 2, 4) # 打印三维数组的所有元素 print ...

  8. Numpy 数组属性

    Numpy 数组的维数称为秩(rank),一维数组的秩为 1 , 二维数组的秩为 2 , 以此类推:在Numpy中, 每一个线性的数组称为是一个轴(axis),也就是维度(dimensios).比如说 ...

  9. numpy 数组对象

    numpy 数组对象NumPy中的ndarray是一个多维数组对象,该对象由两部分组成:实际的数据,描述这些数据的元数据# eg_v1 import numpy as np a = np.arange ...

  10. python numpy 数组拼接

    我就写一下我遇到的,更多具体的请看Python之Numpy数组拼接,组合,连接 >>> aarray([0, 1, 2],       [3, 4, 5],       [6, 7, ...

随机推荐

  1. POJ1523 SPF 单点故障

    POJ1523 题意很简单,求删除割点后原先割点所在的无向连通图被分成了几个连通部分(原题说prevent at least one pair of available nodes from bein ...

  2. get和post请求方式的区别,常见状态码的整理

    get和post的区别 get和post是什么? HTTP协议中的两种发送请求的方法.get从指定的资源请求数据: post向指定的资源提交要被处理的数据. HTTP是什么? 超文本传输协议(HTTP ...

  3. koa2的安装

    参考: https://www.jianshu.com/p/6b816c609669 1.1 安装koa-generator 在终端输入: $ npm install -g koa-generator ...

  4. 【BZOJ4337】树的同构(树同构,哈希)

    题意: 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1T ...

  5. 前端HTTP缓存

    Web 缓存大致可以分为:数据库缓存.服务器端缓存(代理服务器缓存.CDN 缓存).浏览器缓存.其中前端比较关心的是浏览器缓存,包括今天要说的HTTP缓存和前面说过的cookie.localStora ...

  6. 转载:mybatis中<![CDATA[]]>的作用

    作者:QH_JAVA 来源:CSDN 原文:https://blog.csdn.net/qh_java/article/details/50755655?utm_source=copy 在使用myba ...

  7. 5个用/不用GraphQL的理由

    我在如何使用Gatsby建立博客 / How to build a blog with Gatsby这篇文章中提过GraphQL在Gatsby中的应用.总的来讲,它是一个新潮的技术,在适宜的使用场景威 ...

  8. CSS - 初始值、指定值、计算值、应用值、实际值

    初始值:未提供指定值且未从父元素指定值继承的 CSS 属性的值. 指定值:通过直接声明或 CSS 属性的值. 计算值:通过需要计算得到的值,如,继承和相对的尺寸.(注意:有些计算要等到布局确定才能进行 ...

  9. 20160711--C# 委托的三种调用示例(同步调用 异步调用 异步回调)【转载】

    首先,通过代码定义一个委托和下面三个示例将要调用的方法: 代码如下: public delegate int AddHandler(int a,int b); public class 加法类 { p ...

  10. AlertManager警报通知 E-mail 微信 模板

    # AlertManager警报通知 E-mail 微信 模板 #AlertManager配置 #alertmanager.yml # 全局配置项 global: resolve_timeout: 5 ...