*题目描述:



*题解:
树哈希+组合数学。对于树的形态相同的子树就一起考虑。
*代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> #ifdef WIN32
#define LL "%I64d"
#else
#define LL "%lld"
#endif #ifdef CT
#define debug(...) printf(__VA_ARGS__)
#define setfile()
#else
#define debug(...)
#define filename ""
#define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
#endif #define R register
#define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
#define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
#define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
#define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
char B[1 << 15], *S = B, *T = B;
inline int FastIn()
{
R char ch; R int cnt = 0; R bool minus = 0;
while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
ch == '-' ? minus = 1 : cnt = ch - '0';
while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
return minus ? -cnt : cnt;
}
#define maxn 500010
#define maxm 1000010
struct Edge
{
int to;
Edge *next, *rev;
}*last[maxn], e[maxm], *ecnt = e;
inline void link(R int a, R int b)
{
*++ecnt = (Edge) {b, last[a], ecnt + 1}; last[a] = ecnt;
*++ecnt = (Edge) {a, last[b], ecnt - 1}; last[b] = ecnt;
}
int rt[2], rtcnt, size[maxn], n, root;
void dfs(R int x, R int fa)
{
size[x] = 1;
R int maxx = 0;
for (R Edge *iter = last[x]; iter; iter = iter -> next)
{
R int pre = iter -> to;
if (pre != fa)
{
dfs(pre, x);
size[x] += size[pre];
cmax(maxx, size[pre]);
}
}
cmax(maxx, n - size[x]);
if (maxx <= n >> 1) rt[rtcnt++] = x;
}
int p[maxn], inp[maxn];
const int mod = 1e9 + 7;
inline int qpow(R int x, R int power)
{
R int base = x, ans = 1;
for ( ; power; power >>= 1, base = 1ll * base * base % mod)
if (power & 1) ans = 1ll * ans * base % mod;
return ans;
}
inline void prepare()
{
R int _ = maxn - 1, tmp = 1;
for (R int i = 2; i <= _; ++i)
tmp = 1ll * tmp * i % mod;
inp[_] = qpow(tmp, mod - 2);
for (R int i = _ - 1; ~i; --i)
inp[i] = 1ll * inp[i + 1] * (i + 1) % mod;
}
inline int C(R long long n, R int m)
{
n %= mod; R long long tmp = 1;
for (R int i = 1; i <= m; ++i) tmp = tmp * (n - i + 1) % mod;
return tmp * inp[m] % mod;
}
inline int cl(R long long n, R int k)
{
return C(n + k - 1, k);
}
//cl表示在n种无限多的物品内取k个的方案数
unsigned long long hash[maxn], hash2[maxn];
int st[maxn], top;
long long f[maxn][2]; //f[x][0..1]表示x节点取或者不取的方案数
inline bool cmp(R int x, R int y)
{
return hash[x] > hash[y];
}
void dp(R int x, R int fa)
{
f[x][0] = f[x][1] = 1ll;
for (R Edge *iter = last[x]; iter; iter = iter -> next)
if (iter -> to != fa)
dp(iter -> to, x);
top = 0;
for (R Edge *iter = last[x]; iter; iter = iter -> next)
if (iter -> to != fa)
st[++top] = iter -> to;
std::sort(st + 1, st + top + 1, cmp);
for (R int i = 1, j; i <= top; i = j)
{
for (j = i + 1; j <= top && hash[st[i]] == hash[st[j]] && hash2[st[i]] == hash2[st[j]]; ++j);
f[x][0] = f[x][0] * cl(f[st[i]][0] + f[st[i]][1], j - i) % mod;
f[x][1] = f[x][1] * cl(f[st[i]][0], j - i) % mod;
}
hash[x] = 123;
for (R int i = 1; i <= top; ++i)
hash[x] = (hash[x] * 1999 + 233 * hash[st[i]]) % 998244353;
hash2[x] = 123;
for (R int i = 1; i <= top; ++i)
hash2[x] = (hash2[x] * 12579 + (hash2[st[i]] * 233)) % mod;
}
int main()
{
// setfile();
n = FastIn(); prepare();
for (R int i = 1; i < n; ++i)
{
R int a = FastIn(), b = FastIn();
link(a, b);
}
dfs(1, 0);
if (rtcnt == 2)
{
R Edge *iter;
for (iter = last[rt[0]]; iter; iter = iter -> next)
if (iter -> to == rt[1])
{
iter -> to = iter -> rev -> to = ++n;
break;
}
*++ecnt = (Edge) {rt[0], last[n], ecnt}; last[n] = ecnt;
*++ecnt = (Edge) {rt[1], last[n], ecnt}; last[n] = ecnt;
root = n;
}
else root = rt[0];
dp(root, 0);
R long long ans;
if (rtcnt == 1)
ans = (f[root][0] + f[root][1]) % mod;
else
{
R int x = rt[0], y = rt[1];
if (hash[x] == hash[y])
ans = f[x][0] * f[y][1] % mod + cl(f[x][0], 2) % mod;
else
ans = (f[x][0] * f[y][0] % mod + f[x][0] * f[y][1] % mod + f[x][1] * f[y][0] % mod) % mod;
}
printf("%lld\n", ans % mod );
return 0;
}
/*
input:
6
1 2
1 3
1 4
4 5
4 6
output:
9
*/

【bzoj3162】独钓寒江雪的更多相关文章

  1. BZOJ3162 独钓寒江雪(哈希+树形dp)

    数独立集显然是可以树形dp的,问题在于本质不同. 假设已经给树确立了一个根并且找到了所有等效(注意是等效而不是同构)子树,那么对转移稍加修改使用隔板法就行了. 关键在于找等效子树.首先将树的重心(若有 ...

  2. [bzoj3162]独钓寒江雪_树hash_树形dp

    独钓寒江雪 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3162 题解: 首先,如果没有那个本质相同的限制这就是个傻逼题. 直接树形dp ...

  3. [BZOJ3162]独钓寒江雪

    bzoj description 你要给一个树上的每个点黑白染色,要求白点不相邻.求本质不同的染色方案数. 两种染色方案本质相同当且仅当对树重新标号后对应节点的颜色相同. \(n\le 5\times ...

  4. bzoj3162独钓寒江雪

    题意 \(n\)阶树,求本质不同的独立集个数 做法 重新编号后重心是不变的,如果有两个重心,可以加个虚点 用树哈希判子树有多少个相同的子树,设某种有\(k\)个,如果原本方案数为\(x\)个 则方案数 ...

  5. liaoliao的四连做第二弹

    liaoliao四连做第一弹 1.bzoj3211: 花神游历各国 由于$10^9$以内的数最多只会被开方$10$次,所以我们可以用线段树维护然后剪枝.. #include <cstdio> ...

  6. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  7. 【BZOJ3162】独钓寒江雪(树哈希,动态规划)

    [BZOJ3162]独钓寒江雪(树哈希,动态规划) 题面 BZOJ 题解 忽然翻到这道题目,突然发现就是前几天一道考试题目... 题解: 树哈希,既然只考虑这一棵树,那么,如果两个点为根是同构的, 他 ...

  8. 【BZOJ3162】独钓寒江雪 树同构+DP

    [BZOJ3162]独钓寒江雪 题解:先进行树hash,方法是找重心,如果重心有两个,则新建一个虚点将两个重心连起来,新点即为新树的重心.将重心当做根进行hash,hash函数不能太简单,我的方法是: ...

  9. [BZOJ:3162]:独钓寒江雪

    题解: 求本质不同的独立集的个数 首先独立集的个数是很好做的 \(f[u][0/1]\)表示节点\(u\)不选/选的方案数 然后dp就是 \(f[u][0] = f[u][0] * (f[v][0] ...

随机推荐

  1. python+selenium浏览器截图

    from selenium import webdriverfrom time import sleep driver = webdriver.Firefox() # 指定和打开浏览器driver.g ...

  2. js while循环

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  3. c++多线程并发学习笔记(2)

    等待一个时间或其他条件 在一个线程等待完成任务时,会有很多选择: 1. 它可以持续的检查共享数据标志(用于做保护工作的互斥量),直到另一个线程完成工作时对这个标志进行重设.缺点:资源浪费,开销大 2. ...

  4. PY个欧拉筛

    大数据用 python? 速度感人 突然来了一发 python 欧拉筛,调了半天之后输入 1e7 过了几秒钟之后出解了,PY 果然神速 没学过 PY 的小同学可以当做 VB 的阅读程序,反正语言隔离都 ...

  5. Linux安装 jdk&maven

    JDK安装 1. 下载JDK压缩包http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html ...

  6. C#设计模式:解释器模式(Interpreter Pattern)

    一,C#设计模式:解释器模式(Interpreter Pattern) 1,解释器模式的应用场合是Interpreter模式应用中的难点,只有满足“业务规则频繁变化,且类似的模式不断重复出现,并且容易 ...

  7. Asp.net MVC 发布到IIS6

    1.发布网站 2.打开IIS,添加网站 3.修改程序池,改为.net 4.0 4.添加虚拟目录(及添加aspnet_isapi.dll文件,该文件目录在“C:\Windows\Microsoft.NE ...

  8. 坐标轴刻度取值算法-基于魔数数组-源于echarts的y轴刻度计算需求

    本文链接:https://blog.csdn.net/qq_26909801/article/details/96966372数值型坐标轴刻度计算算法前言算法描述上代码代码运行效果结语前言因实习的公司 ...

  9. 2019 安洵杯 Re 部分WP

    0x01.EasyEncryption 测试文件:https://www.lanzous.com/i7soysb 1.IDA打开 int sub_416560() { int v0; // eax i ...

  10. ASP.NET Web API 使用Swagger

    ASP.NET Web API 使用Swagger使用笔记   最近换了工作,其中Webapi这块没有文档,之前有了解过Swagger借此机会好好整理下常用的地方分享给有需要的小伙伴. 概述: 1.s ...