【python】小型神经网络的搭建
import numpy as np def sigmoid(x):
# Sigmoid activation function: f(x) = 1 / (1 + e^(-x))
return 1 / (1 + np.exp(-x)) def deriv_sigmoid(x):
# Derivative of sigmoid: f'(x) = f(x) * (1 - f(x))
fx = sigmoid(x)
return fx * (1 - fx) def mse_loss(y_true, y_pred):
# y_true and y_pred are numpy arrays of the same length.
return ((y_true - y_pred) ** 2).mean() class OurNeuralNetwork:
'''
A neural network with:
- 2 inputs
- a hidden layer with 2 neurons (h1, h2)
- an output layer with 1 neuron (o1) *** DISCLAIMER ***:
The code below is intended to be simple and educational, NOT optimal.
Real neural net code looks nothing like this. DO NOT use this code.
Instead, read/run it to understand how this specific network works.
'''
def __init__(self):
# Weights
self.w1 = np.random.normal()
self.w2 = np.random.normal()
self.w3 = np.random.normal()
self.w4 = np.random.normal()
self.w5 = np.random.normal()
self.w6 = np.random.normal() # Biases
self.b1 = np.random.normal()
self.b2 = np.random.normal()
self.b3 = np.random.normal() def feedforward(self, x):
# x is a numpy array with 2 elements.
h1 = sigmoid(self.w1 * x[0] + self.w2 * x[1] + self.b1)
h2 = sigmoid(self.w3 * x[0] + self.w4 * x[1] + self.b2)
o1 = sigmoid(self.w5 * h1 + self.w6 * h2 + self.b3)
return o1 def train(self, data, all_y_trues):
'''
- data is a (n x 2) numpy array, n = # of samples in the dataset.
- all_y_trues is a numpy array with n elements.
Elements in all_y_trues correspond to those in data.
'''
learn_rate = 0.1
epochs = 1000 # number of times to loop through the entire dataset for epoch in range(epochs):
for x, y_true in zip(data, all_y_trues):
# --- Do a feedforward (we'll need these values later)
sum_h1 = self.w1 * x[0] + self.w2 * x[1] + self.b1
h1 = sigmoid(sum_h1) sum_h2 = self.w3 * x[0] + self.w4 * x[1] + self.b2
h2 = sigmoid(sum_h2) sum_o1 = self.w5 * h1 + self.w6 * h2 + self.b3
o1 = sigmoid(sum_o1)
y_pred = o1 # --- Calculate partial derivatives.
# --- Naming: d_L_d_w1 represents "partial L / partial w1"
d_L_d_ypred = -2 * (y_true - y_pred) # Neuron o1
d_ypred_d_w5 = h1 * deriv_sigmoid(sum_o1)
d_ypred_d_w6 = h2 * deriv_sigmoid(sum_o1)
d_ypred_d_b3 = deriv_sigmoid(sum_o1) d_ypred_d_h1 = self.w5 * deriv_sigmoid(sum_o1)
d_ypred_d_h2 = self.w6 * deriv_sigmoid(sum_o1) # Neuron h1
d_h1_d_w1 = x[0] * deriv_sigmoid(sum_h1)
d_h1_d_w2 = x[1] * deriv_sigmoid(sum_h1)
d_h1_d_b1 = deriv_sigmoid(sum_h1) # Neuron h2
d_h2_d_w3 = x[0] * deriv_sigmoid(sum_h2)
d_h2_d_w4 = x[1] * deriv_sigmoid(sum_h2)
d_h2_d_b2 = deriv_sigmoid(sum_h2) # --- Update weights and biases
# Neuron h1
self.w1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w1
self.w2 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_w2
self.b1 -= learn_rate * d_L_d_ypred * d_ypred_d_h1 * d_h1_d_b1 # Neuron h2
self.w3 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w3
self.w4 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_w4
self.b2 -= learn_rate * d_L_d_ypred * d_ypred_d_h2 * d_h2_d_b2 # Neuron o1
self.w5 -= learn_rate * d_L_d_ypred * d_ypred_d_w5
self.w6 -= learn_rate * d_L_d_ypred * d_ypred_d_w6
self.b3 -= learn_rate * d_L_d_ypred * d_ypred_d_b3 # --- Calculate total loss at the end of each epoch
if epoch % 10 == 0:
y_preds = np.apply_along_axis(self.feedforward, 1, data)
loss = mse_loss(all_y_trues, y_preds)
print("Epoch %d loss: %.8f" % (epoch, loss)) # Define dataset
data = np.array([
[-2, -1], # Alice
[25, 6], # Bob
[17, 4], # Charlie
[-15, -6], # Diana
])
all_y_trues = np.array([
1, # Alice
0, # Bob
0, # Charlie
1, # Diana
]) # Train our neural network!
network = OurNeuralNetwork()
network.train(data, all_y_trues)
tz@croplab,HZAU
2019/6/19
【python】小型神经网络的搭建的更多相关文章
- 使用python制作神经网络——搭建框架
一.神经网络的大体结构可分为三个函数,分别如下: 1.初始化函数 设定输入层节点,隐藏层节点和输出层节点的数量. 2.训练 学习给定训练集样本后,优化权重. 3.查询 给定输入,从输出节点给出答案 所 ...
- Python实现一个简单三层神经网络的搭建并测试
python实现一个简单三层神经网络的搭建(有代码) 废话不多说了,直接步入正题,一个完整的神经网络一般由三层构成:输入层,隐藏层(可以有多层)和输出层.本文所构建的神经网络隐藏层只有一层.一个神经网 ...
- python+Eclipse+pydev环境搭建
python+Eclipse+pydev环境搭建 本文重点介绍使用Eclipse+pydev插件来写Python代码, 以及在Mac上配置Eclipse+Pydev 和Windows配置Ecli ...
- 基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境
基于Ubuntu+Python+Tensorflow+Jupyter notebook搭建深度学习环境 前言一.环境准备环境介绍软件下载VMware下安装UbuntuUbuntu下Anaconda的安 ...
- Python开发:环境搭建(python3、PyCharm)
Python开发:环境搭建(python3.PyCharm) python3版本安装 PyCharm使用(完全图解(最新经典))
- centos6.5下Python IDE开发环境搭建
自由不是想做什么就做什么,而是想不做什么就不做什么. ---摘抄于2016/11/30晚 之前学习了一段时间的Python,但所有部署都在windows上.正赶上最近在学习liux,以后 ...
- Python+Selenium+webdriver环境搭建(windows)以及相关资源下载链接
今天记录一下测试小菜鸟alter在测试入门的一点关于python+Selenium+webdriver环境搭建的经历以及资源分享.欢迎交流学习,批评指正. 一.Python的下载与安装 1.pytho ...
- Python之Django环境搭建(MAC+pycharm+Django++postgreSQL)
Python之Django环境搭建(MAC+pycharm+Django++postgreSQL) 转载请注明地址:http://www.cnblogs.com/funnyzpc/p/7828614. ...
- 深度学习与计算机视觉:基于Python的神经网络的实现
在前面两篇文章介绍了深度学习的一些基本概念,本文则使用Python实现一个简单的深度神经网络,并使用MNIST数据库进行测试. 神经网络的实现,包括以下内容: 神经网络权值的初始化 正向传播 误差评估 ...
随机推荐
- vue改变数据视图刷新问题
有时候我们会碰到数据已经更新了但是视图不更新的问题 1.根属性不存在,而想要直接给根属性赋值导致的视图不更新 解决:初始化属性的时候给根属性初始化一个空值就可以了 2.数组视图不更新 通过以下几个方法 ...
- pl/sql 笔记之基础(上)
由于公司中使用 oracle,而本人对存储过程一直也懵懵懂懂,故一周时间学习了一遍 pl/sql,在此记下笔记!!! 一.前提,pl/sql 是啥? 1.PL/SQL是一种高级数据库程序设计语言,该语 ...
- pyquery:轻松、灵活的处理html
介绍 pyquery是一个专门用来解析html的库,从名字很容易想到jQuery,没错,这完全是仿照jQuery的语法实现的.如果用过jQuery,那么pyquery也很容易上手 初始化html py ...
- 010-SaltStack及SaltStack Web UI安装部署
saltstack web uiweb平台界面 saltapi项目主页:http://salt-api.readthedocs.org/en/latest/ halite 项目主页:https://g ...
- 标准C语言(4)
分支语句可以在程序执行的时候从几组语句里选择一组,执行而忽略其他组,在编写程序的时候如果遇到多种可能性,每种可能性需要专门的语句处理,这种情况下就可以考虑采用分支结构解决问题 if关键字可以用来编写分 ...
- Balancing Act POJ - 1655 (树的重心)
Consider a tree T with N (1 <= N <= 20,000) nodes numbered 1...N. Deleting any node from the t ...
- Hbase性能优化
HBase性能优化方法总结 1. 表的设计 1.1 Pre-Creating Regions 默认情况下,在创建HBase表的时候会自动创建一个region分区,当导入数据的时候,所有的HBase客户 ...
- C#线程中LOCK的意义
学习心得,为的是让新人能理解,高手直接绕~ lock 确保当一个线程位于代码的临界区时,另一个线程不进入临界区.如果其他线程试图进入锁定的代码,则它将一直等待(即被阻止),直到该对象被释放. 引用一句 ...
- Ubuntu安装opencv 为调用gpu模块
也真够折腾的. 事件背景:为了一个光流的提取处理,本来是3.1的opencv在include一些模块上出错,原因是opencv3.0以上的版本对模块进行了再分离,要contribute,但是contr ...
- 使用CEfSharp之旅 前后端访问代码
1.引入CEfSharp newget包 2.把平台配置为X86或X64,any cpu不支持此控件 3.引入命名空间 using CefSharp; using CefSharp.WinForms; ...