CF671D Roads in Yusland
一道很玄妙的题= =
我们考虑先考虑DP 那么有$f[x]=min(c+\sum f[y])$ $f[x]$表示覆盖x的子树和x->fa[x]的所有边最小代价 我们枚举一条边c覆盖的x->fa[x]并把它作为主链 f[y]就是除了主链以外的所有点的dp
接着考虑这个玩意怎么维护 我们可以在dp过程中直接把$\sum f[y]$放入$c$中 就变成了下面的这些操作
1.将终点在x的链删除。
2.记$sum=\sum f[y] y=son[x]$,son[i]子树内所有的链$c+=sum-f[son[i]]$,特别地,起点在i的链$c+=sum$。
3.取出f[x]是子树x中所有的链c的最小值。
显然这个可以数据结构维护掉
接下来我们考虑更为简洁的做法。
我们还是考虑每条向父亲的边都需要被覆盖。所以我们在覆盖x->fa[x]的时候我们是把所有的x的子树的链都合并起来然后选出一条覆盖这个边的。
直接用堆维护,这样的贪心显然是不对的。但是我们考虑用整体标记覆盖的方法。也就是取出堆顶v然后对堆中所有元素打上-v的标记 这样的话就可以选出别的链来替换掉当前的选择。这个方法非常有趣,一会写的另一道题也是用的标记覆盖的方法来维护。
然后我们在每条链的尽头需要把它删掉,实际上也不需要彻底删掉,我们只需要让它不能成为答案即可。这个在取堆顶的时候判断一下就可以了。
这个题很坑的地方就是在pop的时候需要把当前的标记下传掉,然而很多人都没有写这个地方,CF数据也较弱没有卡掉这个问题。在校内OJ上WA到自闭一度以为算法错了的我流下了悲伤的泪水TAT。
//Love and Freedom.
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ll long long
#define inf 20021225
#define ls(x) t[x].son[0]
#define rs(x) t[x].son[1]
#define N 300010
using namespace std;
int read()
{
int s=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<='') s=s*+ch-'',ch=getchar();
return s*f;
}
struct node{int fa,son[],dep; ll val,tag;}t[N];
struct edge{int to,lt;}e[N<<]; int in[N],cnt; ll ans;
void add(int x,int y)
{
e[++cnt].to=y; e[cnt].lt=in[x]; in[x]=cnt;
e[++cnt].to=x; e[cnt].lt=in[y]; in[y]=cnt;
}
void put(int x,ll v){if(!x) return; t[x].tag+=v,t[x].val+=v;}
void pushdown(int x)
{
if(!t[x].tag) return;
put(ls(x),t[x].tag); put(rs(x),t[x].tag);
t[x].tag=;
}
int merge(int x,int y)
{
if(!x||!y) return x|y;
if(t[y].val<t[x].val) swap(x,y);
pushdown(x); t[x].son[]=merge(t[x].son[],y);
t[ls(x)].fa=t[rs(x)].fa=x; t[x].fa=x;
if(t[rs(x)].dep>t[ls(x)].dep) swap(ls(x),rs(x));
t[x].dep=t[rs(x)].dep+; return x;
}
int rtn[N],top[N]; bool vis[N]; bool GG;
void dfs(int x,int f)
{
for(int i=in[x];i;i=e[i].lt)
{
int y=e[i].to; if(f==y) continue;
dfs(y,x); if(GG) return;
rtn[x]=merge(rtn[x],rtn[y]);
}
vis[x]=; if(x==) return;
while(vis[top[rtn[x]]]) pushdown(rtn[x]),rtn[x]=merge(ls(rtn[x]),rs(rtn[x]));
if(!rtn[x]){GG=; return;}
ans+=t[rtn[x]].val; put(rtn[x],-t[rtn[x]].val);
}
int main()
{
int n=read(),m=read();
for(int i=;i<n;i++){int x=read(),y=read(); add(x,y);}
for(int i=;i<=m;i++)
{
int x=read(); top[i]=read(); t[i].val=read();
rtn[x]=merge(rtn[x],i);
}
dfs(,);
printf("%lld\n",GG?-:ans);
return ;
}
CF671D Roads in Yusland的更多相关文章
- 【CF671D】Roads in Yusland(贪心,左偏树)
[CF671D]Roads in Yusland(贪心,左偏树) 题面 洛谷 CF 题解 无解的情况随便怎么搞搞提前处理掉. 通过严密(大雾)地推导后,发现问题可以转化成这个问题: 给定一棵树,每条边 ...
- codesforces 671D Roads in Yusland
Mayor of Yusland just won the lottery and decided to spent money on something good for town. For exa ...
- Codeforces 671 D. Roads in Yusland
题目描述 Mayor of Yusland just won the lottery and decided to spent money on something good for town. Fo ...
- [Codeforces671D]Roads in Yusland
[Codeforces671D]Roads in Yusland Tags:题解 题意 luogu 给定以1为根的一棵树,有\(m\)条直上直下的有代价的链,求选一些链把所有边覆盖的最小代价.若无解输 ...
- 【CF617D】Roads in Yusland
[CF617D]Roads in Yusland 题面 蒯的洛谷的 题解 我们现在已经转化好了题目了,戳这里 那么我们考虑怎么求这个东西,我们先判断一下是否所有的边都能被覆盖,不行的话输出\(-1\) ...
- 【CodeForces】671 D. Roads in Yusland
[题目]D. Roads in Yusland [题意]给定n个点的树,m条从下往上的链,每条链代价ci,求最少代价使得链覆盖所有边.n,m<=3*10^5,ci<=10^9,time=4 ...
- CF671D:Roads in Yusland
n<=300000个点的树,给m<=300000条带权路径(ui,vi,保证vi是ui的祖先)求覆盖整棵树每条边的最小权和. 好题好姿势!直观的看到可以树形DP,f[i]表示把点i包括它爸 ...
- 【CF671D】 Roads in Yusland(对偶问题,左偏树)
传送门 洛谷翻译 CodeForces Solution emmm,先引入一个对偶问题的概念 \(max(c^Tx|Ax \leq b)=min(b^Ty|A^Ty \ge c)\) 考虑这个式子的现 ...
- 题解-Codeforces671D Roads in Yusland
Problem Codeforces-671D 题意概要:给定一棵 \(n\) 点有根树与 \(m\) 条链,链有费用,保证链端点之间为祖先关系,问至少花费多少费用才能覆盖整棵树(\(n-1\) 条边 ...
随机推荐
- Oracle诊断: 服务器启后,无法连接
Oracle 服务器启后,使用Toad 客户端连接oracle 时候,遇到下面的错误: oracle ORA-12514: TNS: no listener TNS: listener does no ...
- scipy几乎实现numpy的所有函数
NumPy和SciPy的关系? numpy提供了数组对象,面向的任何使用者.scipy在numpy的基础上,面向科学家和工程师,提供了更为精准和广泛的函数.scipy几乎实现numpy的所有函数, ...
- apache cgi 程序: End of script output before headers
测试linux Apache cgi程序: #include <stdio.h> int main(){ printf("abc"); ; } 目录:/var/www/ ...
- Window7 系统下重新建立一个新分区
为了方便使用,准备在原来分区上再分割出一个分区,步骤如下 首先右击计算机,选择管理打开计算机管理窗口,选择磁盘管理,当前窗口右侧会出现当前计算机所有已存在的分区列表. 选择要进行分区的磁盘,右击选择压 ...
- 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_10 斗地主案例(双列)_1_斗地主案例的需求分析
之前做的斗地主的版本,没有从小到大进行排序 一个存储牌的花色,一个存储牌的序号. 放牌的容器.使用Map 再创建一个集合进行洗牌. 调用shuffer方法洗牌.生成后就是随即的索引了.
- Http Handler 介绍
引言 在 Part.1 Http请求处理流程 一文中,我们了解了Http请求的处理过程以及其它一些运作原理.我们知道Http管道中有两个可用接口,一个是IHttpHandler,一个是IHttpMod ...
- Flask 启动配置
数据迁移.
- oracle--单行函数和多行函数
单行函数 1.字符函数 函 数 功 能 示 例 结 果 INITCAP (char) 首字母大写 initcap ('hello') Hello LOWER (char) 转换为小写 lower ...
- chineseocr项目的配置阶段出现的问题及解决方案
chineseocr为GitHub上的一个开源项目,主要使用yolos,crnn等深度学习框架训练好后的模型使用.测试结果发现,不管是针对文本文件.表格文件.还是场景图,如身份证火车票,识别效果都比较 ...
- windows 使用nginx
windows 安装nginx 进入此地址进行下载 http://nginx.org/en/download.html 解压到相关目录 启动 start nginx 关闭 nginx -s stop ...