洛谷P4525 【模板】自适应辛普森法1与2
洛谷P4525 【模板】自适应辛普森法1
与P4526【模板】自适应辛普森法2
P4525题目描述
计算积分
结果保留至小数点后6位。
数据保证计算过程中分母不为0且积分能够收敛。
输入格式
一行,包含6个实数a,b,c,d,L,R
输出格式
一行,积分值,保留至小数点后6位。
输入输出样例
1 2 3 4 5 6
2.732937
我的理解
求面积
说明/提示
a,b,c,d∈[-10,10]
-100≤L<R≤100 且 R-L≥1
Solution
今天下午我也不知道为什么要去听这种课,但是又不想在最后几天留下遗憾,所以就听了一些东西,来做(作)做(作)题(死)吧。没想到在几番调试后居然AC了!!!
辛普森公式
非常优美而又好记!
只有3个系数!
而且,这个东西在计算不超过4次的函数时是非常精准的!
比较适合在于被积函数的原函数不好找的情况下使用!
而且,可以套上递归的模型,使得答案更加准确!
原理
对一段区间进行递归二分,再套用Simpson公式拟合。当整段区间的拟合结果等于(十分接近于)二分区间的两个结果之和时,就是找到了答案。
Code
定义好变量和精度
#include<iostream>
#include<cstdio>
#include<cmath>
#define IL inline
#define re register
using namespace std;
const double eps=1e-;
double a,b,c,d,L,R;
计算函数f
IL double f(double x)
{
return (c*x+d)/(a*x+b);
}
套用辛普森公式!
IL double simpson(double l,double r)
{
return (r-l)*(f(l)+*f((l+r)/2.0)+f(r))/;
}
套用带精度的递归!
double integral(double l,double r)
{
double mid=(l+r)/,ans=simpson(l,r);
if(fabs(ans-simpson(l,mid)-simpson(mid,r))<eps) return (ans+simpson(l,mid)+simpson(mid,r))/;
return integral(l,mid)+integral(mid,r);
}
把eps设的再小一点也没又关系哟!再不行,可以考虑使用long double!
主函数部分
int main()
{
cin>>a>>b>>c>>d>>L>>R;
printf("%.6lf",integral(L,R));
return ;
}
黄字部分:为了使结果更精准,可以将这段区间二分和不二分的答案求加权平均值!
Attention
注意输出六位小数!
递归函数就不要写inline了!不然更容易爆栈!
Simpson公式很好记,考虑背下来?
End
看看下一篇?
洛谷P4525 【模板】自适应辛普森法1与2的更多相关文章
- 洛谷.4525.[模板]自适应辛普森法1(Simpson积分)
题目链接 Simpson积分公式:\[\int_a^bf(x)dx\approx\frac{b-a}{6}\left[f(a)+f(b)+4f(\frac{a+b}{2})\right]\] 推导过程 ...
- 洛谷4525 & 4526:【模板】自适应辛普森法——题解
参考:https://phqghume.github.io/2018/05/19/%E8%87%AA%E9%80%82%E5%BA%94%E8%BE%9B%E6%99%AE%E6%A3%AE%E6%B ...
- 洛谷P4526 【模板】自适应辛普森法2
P4526 [模板]自适应辛普森法2 洛谷传送门 题目描述 计算积分 保留至小数点后5位.若积分发散,请输出"orz". 输入格式 一行,包含一个实数,为a的值 输出格式 一行,积 ...
- P4525 【模板】自适应辛普森法1
P4525 [模板]自适应辛普森法1 #include <bits/stdc++.h> using namespace std; ; double a, b, c, d, l, r; in ...
- P4526 【模板】自适应辛普森法2
P4526 [模板]自适应辛普森法2 #include <bits/stdc++.h> using namespace std; ; double a; inline double f(d ...
- luogu P4525 自适应辛普森法1
LINK:自适应辛普森法1 观察题目 这个东西 凭借我们的数学知识应该是化简不了的. 可以直接认为是一个函数 求定积分直接使用辛普森就行辣. 一种写法: double a,b,c,d; double ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
随机推荐
- Docker快速上手之搭建SpringBoot项目
Docker是基于Go语言实现的云开源项目. Docker的主要目标是“Build,Ship and Run Any App,Anywhere”,也就是通过对应用组件的封装.分发.部署.运行等生命周期 ...
- SendInput模拟键盘操作
#include <windows.h> int main() { HWND parentHwnd, childHwnd; INPUT input[4]; parentHwnd = Fin ...
- python3 控制结构知识及范例
(一)三种基本控制结构 1.顺序结构:按照程序语句编写的顺序依次逐条执行 2.选择结构:根据特定的条件选择某一个分支 3.循环结构:反复执行某个或者某些操作,关注点:在什么情况下,反复执行哪一部分的操 ...
- Affinity Propagation Demo1学习
利用AP算法进行聚类: 首先导入需要的包: from sklearn.cluster import AffinityPropagation from sklearn import metrics fr ...
- 形象解释各种卷积算法(Convolution animations)
No padding, no strides Arbitrary padding, no strides Half padding, no strides Full padding, no strid ...
- Codeforces_818
A.winners总数为(k+1)diplomas. #include<bits/stdc++.h> using namespace std; long long n,k; int mai ...
- react项目中引用amap(高德地图)坑
最近在写一个react项目,用到了需要定位的需求,于是乎自己决定用高德地图(AMap),但是react官方文档的案列很少,大多都是原生JS的方法. 在调用amap的 Geocoder Api 时,一直 ...
- Classmethod and Staticmethod - Python 类方法 和 静态方法
classmethod and staticmethod classmethod 的是一个参数是类对象 cls (本类,或者子类), 而不是实例对象 instance (普通方法). classmet ...
- Python3(八) 枚举详解
一.枚举其实是一个类 建议标识名字用大写 1.枚举类: from enum import Enum class VIP(Enum): YELLOW = 1 GREEN = 2 ...
- 《自拍教程6》打开Windows文件后缀
如果你用的是Windows操作系统, 请把文件后缀名打开,千万别隐藏后缀名, 后续有各类 .py, .sh, .bat, .exe等不同文件, 需要你时刻关注文件后缀名. 如果是我看到我手下的测试人员 ...