【BZOJ3944】Sum
题面
Description
Input
一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问
Output
一共T行,每行两个用空格分隔的数ans1,ans2
Sample Input
6
1
2
8
13
30
2333
Sample Output
1 1
2 0
22 -2
58 -3
278 -3
1655470 2
题目分析
杜教筛模板题。(垃圾卡常题)
套套路即可。
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#include<map>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=3e6+5,M=3e6;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int prime[N];
bool vis[N];
int mu[N];
map<int,int>smu;
int Smu(int x){
if(x<=M)return mu[x];
if(smu[x])return smu[x];
int ret=1;
for(int l=2,r=0;r!=x;l=r+1){
r=x/(x/l);
ret-=1ll*(r-l+1)*Smu(x/l);
}
return smu[x]=ret;
}
LL phi[N];
map<int,LL>sphi;
LL Sphi(int x){
if(x<=M)return phi[x];
if(sphi[x])return sphi[x];
LL ret=1ll*x*(1ll*x+1)/2;
for(int l=2,r=0;r!=x;l=r+1){
r=x/(x/l);
ret-=1ll*(r-l+1)*Sphi(x/l);
}
return sphi[x]=ret;
}
int main(){
phi[1]=mu[1]=1;
for(int i=2;i<=M;i++){
if(!vis[i])prime[++prime[0]]=i,mu[i]=-1,phi[i]=i-1;
for(int j=1;j<=prime[0]&&i*prime[j]<=M;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*phi[prime[j]];
mu[i*prime[j]]=-mu[i];
}
}
for(int i=2;i<=M;i++)phi[i]+=phi[i-1],mu[i]+=mu[i-1];
int T=Getint();
while(T--){
int n=Getint();
cout<<Sphi(n)<<' '<<Smu(n)<<'\n';
}
return 0;
}
【BZOJ3944】Sum的更多相关文章
- 【BZOJ3944】Sum(杜教筛)
[BZOJ3944]Sum(杜教筛) 题面 求\[\sum_{i=1}^n\mu(i)和\sum_{i=1}^n\phi(i)\] 范围:\(n<2^{31}\) 令\[S(n)=\sum_{i ...
- 【BZOJ3944】 Sum
Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...
- 【CF914G】Sum the Fibonacci 快速??变换模板
[CF914G]Sum the Fibonacci 题解:给你一个长度为n的数组s.定义五元组(a,b,c,d,e)是合法的当且仅当: 1. $1\le a,b,c,d,e\le n$2. $(s_a ...
- 【BZOJ4262】Sum 单调栈+线段树
[BZOJ4262]Sum Description Input 第一行一个数 t,表示询问组数. 第一行一个数 t,表示询问组数. 接下来 t 行,每行四个数 l_1, r_1, l_2, r_2. ...
- 【POJ1707】【伯努利数】Sum of powers
Description A young schoolboy would like to calculate the sum for some fixed natural k and different ...
- 【loj6059】Sum
Portal --> loj6059 Solution 看过去第一反应是..大力数位dp!然后看了一眼数据范围... 但是这没有什么关系!注意到我们不需要考虑前导零了,可以直接快乐dp ...
- 【leetcode】Sum Root to Leaf Numbers(hard)
Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number ...
- 【LeetCode】Sum of Two Integers
问题描述: Calculate the sum of two integers a and b, but you are not allowed to use the operator + and - ...
- 【POJ2739】Sum of Consecutive Prime Numbers
简单的素数打表,然后枚举.开始没注意n读到0结束,TLE了回..下次再认真点.A过后讨论里面有个暴力打表过的,给跪了! #include <iostream> #include <c ...
随机推荐
- centos7.5下coredns+etcd搭建DNS服务器
coredns简介 安装etcd 安装coredns 设置域名解析 A记录 AAAA记录 CNAME记录 SRV记录 TXT记录 coredns简介 CoreDNS是一个DNS服务器,和Caddy S ...
- jeecg下实现自动默认模糊查询
也许jeecg的作者深受SAP毒害吧,没考虑到广大使用JEECG的人群为SAP用户,及所开发的项目均为中小项目,无惧大数据模糊查询带来的功能影响. 经网友“&&康&&& ...
- LeetCode刷题笔记-回溯法-分割回文串
题目描述: 给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串. 返回 s 所有可能的分割方案. 示例: 输入: "aab"输出:[ ["aa", ...
- 2.1_springboot2.x消息介绍&RabbitMQ运行机制
1.概述 1.大多应用中,可通过消息服务中间件来提升系统异步通信.扩展解耦能力 2.消息服务中两个重要概念: 消息代理(message broker)即消息服务器 和目的地(destination ...
- sails中创建和使用services
从sails官方在线文档查知 // EmailService.js - in api/services module.exports = { sendInviteEmail: function(opt ...
- USACO 2011 November Cow Lineup /// map set 尺取法 oj25279
题目大意: 输入n 接下来n行描述n头牛的编号num和品种id 得到包含所有id的最短段 输出最短段的编号差 Sample Input 625 726 115 122 320 130 1 Sample ...
- LightOJ 1245 - Harmonic Number (II)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1245 题意:仿照上面那题他想求这么个公式的数.但是递归太慢啦.让你找公式咯. ...
- 一个很SB的方法,来开始调一个刚启动就SB的程序
自己鼓捣的方法,累死我了... 遇到一个程序,这程序启动之后,会自动重新启动我的电脑, 我想调试它一下,但是遇到了问题, 如果我用调试器附加上去的话,电脑是不重起了,但是它启动了之后会立刻黑屏,全黑, ...
- Docker学习のDocker初识
一.Docker是什么 Docker 是一个开源的应用容器引擎,基于 Go 语言 并遵从Apache2.0协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然 ...
- [转载]ConcurrentHashMap之实现细节
http://www.iteye.com/topic/344876 ConcurrentHashMap是Java 5中支持高并发.高吞吐量的线程安全HashMap实现.在这之前我对Concurrent ...