P2619 [国家集训队2]Tree I

题意

题目描述

给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有\(need\)条白色边的生成树。

题目保证有解。

输入输出格式

输入格式:

第一行\(V,E,need\)分别表示点数,边数和需要的白色边数。

接下来\(E\)行

每行\(s,t,c,col\)表示这边的端点(点从\(0\)开始标号),边权,颜色(\(0\)白色\(1\)黑色)。

输出格式:

一行表示所求生成树的边权和。

输入输出样例

输入样例#1:

2 2 1
0 1 1 1
0 1 2 0

输出样例#1:

2

说明

\(0:V<=10\)

\(1,2,3:V<=15\)

\(0,..,19:V<=50000,E<=100000\)

所有数据边权为\([1,100]\)中的正整数。

\(By\ WJMZBMR\)

思路

\(WQS\)二分真的强。

定义一个东西\(delta\),把它加在所有白边的边权上。对原图直接跑最小生成树,如果白边少了,就调小\(delta\);反之,则调大\(delta\)。最后得到答案。

证明并不会,只会感性理解(毕竟我是蒟蒻)。安利一篇博客好了:关于WQS二分算法以及其一个细节证明 --Creeper_LKF

AC代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e4+4,MAXM=1e5+5;
int n,m,ned,ans,tot,fa[MAXN];
struct Edge
{
int u,v,d,col;
bool operator < (const Edge &sjf) const
{
if(d!=sjf.d) return d<sjf.d;
return col<sjf.col;
}
}edge[MAXM];
int read()
{
int re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
int fd(int x)
{
int r=x;
while(r!=fa[r]) r=fa[r];
int i=x,j;
while(i!=r) j=fa[i],fa[i]=r,i=j;
return r;
}
bool check(int lzq)
{
for(int i=0;i<m;i++) if(!edge[i].col) edge[i].d+=lzq;
for(int i=0;i<n;i++) fa[i]=i;
int white=0,cnt=1;tot=0;
sort(edge,edge+m);
for(int i=0;i<m;i++)
{
int x=edge[i].u,y=edge[i].v;
if(fd(x)==fd(y)) continue;
fa[fd(x)]=fd(y),cnt++,tot+=edge[i].d,white+=(!edge[i].col);
if(cnt==n) break;
}
for(int i=0;i<m;i++) if(!edge[i].col) edge[i].d-=lzq;
return white>=ned;
}
int main()
{
n=read(),m=read(),ned=read();
for(int i=0;i<m;i++) edge[i].u=read(),edge[i].v=read(),edge[i].d=read(),edge[i].col=read();
int L=-15000,R=15000;
while(L<=R)
{
int M=(L+R)>>1;
if(check(M)) L=M+1,ans=tot-M*ned;
else R=M-1;
}
printf("%d",ans);
return 0;
}

Luogu P2619 [国家集训队2]Tree I(WQS二分+最小生成树)的更多相关文章

  1. p2619 [国家集训队2]Tree I [wqs二分学习]

    分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...

  2. luogu P2619 [国家集训队2]Tree I

    题目链接 luogu P2619 [国家集训队2]Tree I 题解 普通思路就不说了二分增量,生成树check 说一下坑点 二分时,若黑白边权有相同,因为权值相同优先选白边,若在最有增量时出现黑白等 ...

  3. Luogu P2619 [国家集训队2]Tree I 凸优化,wqs二分

    新学的科技.设\(f(x)\)为选\(x\)条白色边的时候的最小生成树权值和,那么可以猜到它应该是一个下凸函数的形式. 如图,图中\(x\)坐标表示选的白色边条数,\(y\)坐标表示获得的权值,那么我 ...

  4. P2619 [国家集训队2]Tree I(最小生成树+二分)

    P2619 [国家集训队2]Tree I 每次二分一个$x$,每条白边加上$x$,跑最小生成树 统计一下满足条件的最小值就好了. to me:注意二分不要写挂 #include<iostream ...

  5. 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)

    洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...

  6. P2619 [国家集训队2]Tree I

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  7. luogu P2757 [国家集训队]等差子序列

    题目链接 luogu P2757 [国家集训队]等差子序列 题解 线段树好题 我选择暴力 代码 // luogu-judger-enable-o2 #include<cstdio> inl ...

  8. [国家集训队2012]tree(陈立杰)

    [国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...

  9. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

随机推荐

  1. NX二次开发-UFUN获得边的类型UF_MODL_ask_edge_type

    1 NX11+VS2013 2 3 #include <uf.h> 4 #include <uf_ui.h> 5 #include <uf_modl.h> 6 #i ...

  2. natapp自动获取免费的动态端口域名

    前段时间,因为客户有个项目要求跨局域网进行远程控制桌面,想知道能不能实现.于是查询了许多资料,了解到需要有公网服务器作为中介才能够实现,但是公司又没有公网服务器,于是只有利用花生壳.natapp服务器 ...

  3. 李宏毅机器学习课程---4、Gradient Descent (如何优化 )

    李宏毅机器学习课程---4.Gradient Descent (如何优化) 一.总结 一句话总结: 调整learning rates:Tuning your learning rates 随机Grad ...

  4. fedora23上安装和运行MySQL server (MySQL 已经被MariaDB取代)

    [root@localhost kemin]# dnf install mysql-server Fedora 23 - x86_64 - Updates                        ...

  5. topjui.core.js

    var defaultConfig = { pageLoadComplete: false, config: { ctx: "", mainPage: false, pkName: ...

  6. MyBatis mappers元素标签及其属性、配置

    mappers:映射器,以最佳的方式是告诉 MyBatis 到哪里去找映射文件. <!-- 使用相对于类路径的资源引用,要满足一个条件:1.即映射文件只要放在类路径下,就可以根据相对路径找到,放 ...

  7. decimate、end、interp、resample工具箱函数

  8. DRF的三大认证组件

    目录 DRF的三大认证组件 认证组件 工作原理 实现 权限组件 工作原理 实现 频率组件 工作原理 实现 三种组件的配置 DRF的三大认证组件 认证组件 工作原理 首先,认证组件是基于BaseAuth ...

  9. Neo4j中实现自定义中文全文索引

    数据库检索效率时,一般首要优化途径是从索引入手,然后根据需求再考虑更复杂的负载均衡.读写分离和分布式水平/垂直分库/表等手段:索引通过信息冗余来提高检索效率,其以空间换时间并会降低数据写入的效率:因此 ...

  10. 2019-8-31-C#-字典-Dictionary-的-TryGetValue-与先判断-ContainsKey-然后-Get-的性能对比

    title author date CreateTime categories C# 字典 Dictionary 的 TryGetValue 与先判断 ContainsKey 然后 Get 的性能对比 ...