Luogu P2619 [国家集训队2]Tree I(WQS二分+最小生成树)
题意
题目描述
给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有\(need\)条白色边的生成树。
题目保证有解。
输入输出格式
输入格式:
第一行\(V,E,need\)分别表示点数,边数和需要的白色边数。
接下来\(E\)行
每行\(s,t,c,col\)表示这边的端点(点从\(0\)开始标号),边权,颜色(\(0\)白色\(1\)黑色)。
输出格式:
一行表示所求生成树的边权和。
输入输出样例
输入样例#1:
2 2 1
0 1 1 1
0 1 2 0
输出样例#1:
2
说明
\(0:V<=10\)
\(1,2,3:V<=15\)
\(0,..,19:V<=50000,E<=100000\)
所有数据边权为\([1,100]\)中的正整数。
\(By\ WJMZBMR\)
思路
\(WQS\)二分真的强。
定义一个东西\(delta\),把它加在所有白边的边权上。对原图直接跑最小生成树,如果白边少了,就调小\(delta\);反之,则调大\(delta\)。最后得到答案。
证明并不会,只会感性理解(毕竟我是蒟蒻)。安利一篇博客好了:关于WQS二分算法以及其一个细节证明 --Creeper_LKF。
AC代码
#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e4+4,MAXM=1e5+5;
int n,m,ned,ans,tot,fa[MAXN];
struct Edge
{
int u,v,d,col;
bool operator < (const Edge &sjf) const
{
if(d!=sjf.d) return d<sjf.d;
return col<sjf.col;
}
}edge[MAXM];
int read()
{
int re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
int fd(int x)
{
int r=x;
while(r!=fa[r]) r=fa[r];
int i=x,j;
while(i!=r) j=fa[i],fa[i]=r,i=j;
return r;
}
bool check(int lzq)
{
for(int i=0;i<m;i++) if(!edge[i].col) edge[i].d+=lzq;
for(int i=0;i<n;i++) fa[i]=i;
int white=0,cnt=1;tot=0;
sort(edge,edge+m);
for(int i=0;i<m;i++)
{
int x=edge[i].u,y=edge[i].v;
if(fd(x)==fd(y)) continue;
fa[fd(x)]=fd(y),cnt++,tot+=edge[i].d,white+=(!edge[i].col);
if(cnt==n) break;
}
for(int i=0;i<m;i++) if(!edge[i].col) edge[i].d-=lzq;
return white>=ned;
}
int main()
{
n=read(),m=read(),ned=read();
for(int i=0;i<m;i++) edge[i].u=read(),edge[i].v=read(),edge[i].d=read(),edge[i].col=read();
int L=-15000,R=15000;
while(L<=R)
{
int M=(L+R)>>1;
if(check(M)) L=M+1,ans=tot-M*ned;
else R=M-1;
}
printf("%d",ans);
return 0;
}
Luogu P2619 [国家集训队2]Tree I(WQS二分+最小生成树)的更多相关文章
- p2619 [国家集训队2]Tree I [wqs二分学习]
分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...
- luogu P2619 [国家集训队2]Tree I
题目链接 luogu P2619 [国家集训队2]Tree I 题解 普通思路就不说了二分增量,生成树check 说一下坑点 二分时,若黑白边权有相同,因为权值相同优先选白边,若在最有增量时出现黑白等 ...
- Luogu P2619 [国家集训队2]Tree I 凸优化,wqs二分
新学的科技.设\(f(x)\)为选\(x\)条白色边的时候的最小生成树权值和,那么可以猜到它应该是一个下凸函数的形式. 如图,图中\(x\)坐标表示选的白色边条数,\(y\)坐标表示获得的权值,那么我 ...
- P2619 [国家集训队2]Tree I(最小生成树+二分)
P2619 [国家集训队2]Tree I 每次二分一个$x$,每条白边加上$x$,跑最小生成树 统计一下满足条件的最小值就好了. to me:注意二分不要写挂 #include<iostream ...
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- P2619 [国家集训队2]Tree I
Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...
- luogu P2757 [国家集训队]等差子序列
题目链接 luogu P2757 [国家集训队]等差子序列 题解 线段树好题 我选择暴力 代码 // luogu-judger-enable-o2 #include<cstdio> inl ...
- [国家集训队2012]tree(陈立杰)
[国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
随机推荐
- github如何用浏览器直接打开项目里的html页面?
very easy 第一步 点击html页面 第二步,在地址栏前加 htmlpreview.github.io/?就可以访问
- hexo next主题深度优化(六),使用hexo-neat插件压缩页面,大幅度提升页面性能和响应速度。
文章目录 隆重感谢: 背景 开始 试水 成功的案例 安装插件,执行命令. hexo _config.yml文件添加 坑 跳过压缩文件的正确配置方式 压缩html时不要跳过.md文件 压缩html时不要 ...
- Linux下使用Eclipse 远程调试
1 开启端口 修改/apache-tomcat-7.0.40/bin/catalina.sh 在合适的位置(请自行判断,只要有JAVA_OPTS的设定前后即可)插入下面的设定:UI_DEBUG=&qu ...
- CVE-2019-0708简单复现
各文件对应位置 rdp.rb -> /usr/share/metasploit-framework/lib/msf/core/exploit/rdp.rb rdp_scanner.rb -> ...
- 5-MySQL高级-事务-回滚(3)
回滚 为了演示效果,需要打开两个终端窗口,使用同一个数据库,操作同一张表 step1:连接 终端1 select * from goods_cates; step2:增加数据 终端2:开启事务,插入数 ...
- Lunascape:将FireFox、Safari和IE合为一体的浏览器
转自:http://blog.bingo929.com/lunascape-firefox-safari-ie-all-in-one.html 作为前端开发/网页设计师,电脑中总是安装着各种不同内核渲 ...
- jquery中on绑定click事件在苹果手机中不起作用
写一个div当做了一个按钮来使用. <div class="button"> <div class="sure"> 确定 </di ...
- JS对象 颠倒数组元素顺序reverse() reverse() 方法用于颠倒数组中元素的顺序。
颠倒数组元素顺序reverse() reverse() 方法用于颠倒数组中元素的顺序. 语法: arrayObject.reverse() 注意:该方法会改变原来的数组,而不会创建新的数组. 定义数组 ...
- cookie的设置与销毁
<?php /* 2个参数设置cookie cookie随着浏览器的关闭,就失效了 ); /* 下面我们让cookir多活一会 3个参数来设置cookie,第3个参数指的就是cookie的声明周 ...
- 云-腾讯云-笔记:pom.xml 配置
ylbtech-云-腾讯云-笔记:pom.xml 配置 1. pom.xml返回顶部 1.1 com.qcloud / 腾讯云 <!-- https://mvnrepository.com/ar ...