P2619 [国家集训队2]Tree I

题意

题目描述

给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有\(need\)条白色边的生成树。

题目保证有解。

输入输出格式

输入格式:

第一行\(V,E,need\)分别表示点数,边数和需要的白色边数。

接下来\(E\)行

每行\(s,t,c,col\)表示这边的端点(点从\(0\)开始标号),边权,颜色(\(0\)白色\(1\)黑色)。

输出格式:

一行表示所求生成树的边权和。

输入输出样例

输入样例#1:

2 2 1
0 1 1 1
0 1 2 0

输出样例#1:

2

说明

\(0:V<=10\)

\(1,2,3:V<=15\)

\(0,..,19:V<=50000,E<=100000\)

所有数据边权为\([1,100]\)中的正整数。

\(By\ WJMZBMR\)

思路

\(WQS\)二分真的强。

定义一个东西\(delta\),把它加在所有白边的边权上。对原图直接跑最小生成树,如果白边少了,就调小\(delta\);反之,则调大\(delta\)。最后得到答案。

证明并不会,只会感性理解(毕竟我是蒟蒻)。安利一篇博客好了:关于WQS二分算法以及其一个细节证明 --Creeper_LKF

AC代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=5e4+4,MAXM=1e5+5;
int n,m,ned,ans,tot,fa[MAXN];
struct Edge
{
int u,v,d,col;
bool operator < (const Edge &sjf) const
{
if(d!=sjf.d) return d<sjf.d;
return col<sjf.col;
}
}edge[MAXM];
int read()
{
int re=0;char ch=getchar();
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
return re;
}
int fd(int x)
{
int r=x;
while(r!=fa[r]) r=fa[r];
int i=x,j;
while(i!=r) j=fa[i],fa[i]=r,i=j;
return r;
}
bool check(int lzq)
{
for(int i=0;i<m;i++) if(!edge[i].col) edge[i].d+=lzq;
for(int i=0;i<n;i++) fa[i]=i;
int white=0,cnt=1;tot=0;
sort(edge,edge+m);
for(int i=0;i<m;i++)
{
int x=edge[i].u,y=edge[i].v;
if(fd(x)==fd(y)) continue;
fa[fd(x)]=fd(y),cnt++,tot+=edge[i].d,white+=(!edge[i].col);
if(cnt==n) break;
}
for(int i=0;i<m;i++) if(!edge[i].col) edge[i].d-=lzq;
return white>=ned;
}
int main()
{
n=read(),m=read(),ned=read();
for(int i=0;i<m;i++) edge[i].u=read(),edge[i].v=read(),edge[i].d=read(),edge[i].col=read();
int L=-15000,R=15000;
while(L<=R)
{
int M=(L+R)>>1;
if(check(M)) L=M+1,ans=tot-M*ned;
else R=M-1;
}
printf("%d",ans);
return 0;
}

Luogu P2619 [国家集训队2]Tree I(WQS二分+最小生成树)的更多相关文章

  1. p2619 [国家集训队2]Tree I [wqs二分学习]

    分析 https://www.cnblogs.com/CreeperLKF/p/9045491.html 反正这个博客看起来很nb就对了 但是不知道他在说啥 实际上wqs二分就是原来的值dp[x]表示 ...

  2. luogu P2619 [国家集训队2]Tree I

    题目链接 luogu P2619 [国家集训队2]Tree I 题解 普通思路就不说了二分增量,生成树check 说一下坑点 二分时,若黑白边权有相同,因为权值相同优先选白边,若在最有增量时出现黑白等 ...

  3. Luogu P2619 [国家集训队2]Tree I 凸优化,wqs二分

    新学的科技.设\(f(x)\)为选\(x\)条白色边的时候的最小生成树权值和,那么可以猜到它应该是一个下凸函数的形式. 如图,图中\(x\)坐标表示选的白色边条数,\(y\)坐标表示获得的权值,那么我 ...

  4. P2619 [国家集训队2]Tree I(最小生成树+二分)

    P2619 [国家集训队2]Tree I 每次二分一个$x$,每条白边加上$x$,跑最小生成树 统计一下满足条件的最小值就好了. to me:注意二分不要写挂 #include<iostream ...

  5. 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)

    洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...

  6. P2619 [国家集训队2]Tree I

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  7. luogu P2757 [国家集训队]等差子序列

    题目链接 luogu P2757 [国家集训队]等差子序列 题解 线段树好题 我选择暴力 代码 // luogu-judger-enable-o2 #include<cstdio> inl ...

  8. [国家集训队2012]tree(陈立杰)

    [国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...

  9. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

随机推荐

  1. (转)Java NIO框架Mina、Netty、Grizzly介绍与对比

    转:http://blog.csdn.net/cankykong1/article/details/19937027 Mina: Mina(Multipurpose Infrastructure fo ...

  2. 常用Git命令以及出现的状况ing

    (有任何问题欢迎留言或私聊 && 欢迎交流讨论哦 我的GitHub: Cwolf9 下面是我学习Git时了解到的一些命令和状况经验. 把它们记下来免得忘了.就算忘了也有地方看... 状 ...

  3. 如何用DOS命令查看占用某端口的程序及PID号

    果学过JSP编程的朋友可以会发现,若用Eclipse运行JSP文件时常常会弹出某某端口正在使用,从而导致代码无法运行.如何查找出特定端口的使用情况以及对应的程序呢,针对该问题,本文介绍利用DOS命令查 ...

  4. JTable更新内容的方法

    JTable更新内容的方法 DefaultTableModel dtm=new DefaultTableModel(data,head);//定义表格模型 jt.setModel(dtm);或jt=n ...

  5. CSS3:CSS3 圆角

    ylbtech-CSS3:CSS3 圆角 1.返回顶部 1. CSS3 圆角 CSS3 圆角 使用 CSS3 border-radius 属性,你可以给任何元素制作 "圆角". C ...

  6. (转)python基础之迭代器协议和生成器(一)

    一 递归和迭代 二 什么是迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前 ...

  7. maven-version

    <java.version>1.8</java.version><project.build.sourceEncoding>UTF-8</project.bu ...

  8. Jmeter---参数化之用户参数

    总结: 参数化几次就要设置几个线程,执行的时候,是按顺序执行,下面的请求也会跟着请求

  9. 初学者学习PHP开发应该掌握的几段精华代码

    来自:http://hi.baidu.com/dckhello/item/d62b16d8994bf93449e1ddb0 经典循环例子 <HTML><HEAD><TIT ...

  10. android的webView内部https/http混合以及自适应屏幕

    两种请求都有的情况下,会导致WebView加载不出来. //自适应屏幕 settings.setUseWideViewPort(true); settings.setLoadWithOverviewM ...