粉红色:不会。

黄色:重点。

1.为什么要使用神经网络  

我们使用表格来存储每一个状态 state, 和在这个 state 每个行为 action 所拥有的 Q 值. 而当今问题是在太复杂, 状态可以多到比天上的星星还多(比如下围棋). 如果全用表格来存储它们, 恐怕我们的计算机有再大的内存都不够, 而且每次在这么大的表格中搜索对应的状态也是一件很耗时的事. 不过, 在机器学习中, 有一种方法对这种事情很在行, 那就是神经网络. 我们可以将状态和动作当成神经网络的输入, 然后经过神经网络分析后得到动作的 Q 值, 这样我们就没必要在表格中记录 Q 值, 而是直接使用神经网络生成 Q 值. 还有一种形式的是这样, 我们也能只输入状态值, 输出所有的动作值, 然后按照 Q learning 的原则, 直接选择拥有最大值的动作当做下一步要做的动作. 我们可以想象, 神经网络接受外部的信息, 相当于眼睛鼻子耳朵收集信息, 然后通过大脑加工输出每种动作的值, 最后通过强化学习的方式选择动作.

2.更新神经网络

  

接下来我们基于第二种神经网络来分析, 我们知道, 神经网络是要被训练才能预测出准确的值. 那在强化学习中, 神经网络是如何被训练的呢? 首先, 我们需要 a1, a2 正确的Q值, 这个 Q 值我们就用之前在 Q learning 中的 Q 现实来代替. 同样我们还需要一个 Q 估计 来实现神经网络的更新. 所以神经网络的的参数就是老的 NN 参数 加学习率 alpha 乘以 Q 现实 和 Q 估计 的差距. 我们整理一下.

  

我们通过 NN 预测出Q(s2, a1) 和 Q(s2,a2) 的值, 这就是 Q 估计. 然后我们选取 Q 估计中最大值的动作来换取环境中的奖励 reward. 而 Q 现实中也包含从神经网络分析出来的两个 Q 估计值, 不过这个 Q 估计是针对于下一步在 s’ 的估计. 最后再通过刚刚所说的算法更新神经网络中的参数. 但是这并不是 DQN 会玩电动的根本原因. 还有两大因素支撑着 DQN 使得它变得无比强大. 这两大因素就是 Experience replay 和 Fixed Q-targets.

DQN 两大利器

简单来说, DQN 有一个记忆库用于学习之前的经历. 在之前的简介影片中提到过, Q learning 是一种 off-policy 离线学习法, 它能学习当前经历着的, 也能学习过去经历过的, 甚至是学习别人的经历. 所以每次 DQN 更新的时候, 我们都可以随机抽取一些之前的经历进行学习. 随机抽取这种做法打乱了经历之间的相关性, 也使得神经网络更新更有效率. Fixed Q-targets 也是一种打乱相关性的机理, 如果使用 fixed Q-targets, 我们就会在 DQN 中使用到两个结构相同但参数不同的神经网络, 预测 Q 估计 的神经网络具备最新的参数, 而预测 Q 现实 的神经网络使用的参数则是很久以前的. 有了这两种提升手段, DQN 才能在一些游戏中超越人类.

什么是 DQN的更多相关文章

  1. (转)Let’s make a DQN 系列

    Let's make a DQN 系列 Let's make a DQN: Theory September 27, 2016DQN This article is part of series Le ...

  2. DQN算法

    DQN算法:基础入门看看 # -*- coding: utf-8 -*- import random import gym import numpy as np from collections im ...

  3. 强化学习 - Q-learning Sarsa 和 DQN 的理解

    本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点, ...

  4. 强化学习(十二) Dueling DQN

    在强化学习(十一) Prioritized Replay DQN中,我们讨论了对DQN的经验回放池按权重采样来优化DQN算法的方法,本文讨论另一种优化方法,Dueling DQN.本章内容主要参考了I ...

  5. 强化学习(十)Double DQN (DDQN)

    在强化学习(九)Deep Q-Learning进阶之Nature DQN中,我们讨论了Nature DQN的算法流程,它通过使用两个相同的神经网络,以解决数据样本和网络训练之前的相关性.但是还是有其他 ...

  6. 强化学习(十一) Prioritized Replay DQN

    在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差.今天我 ...

  7. 强化学习(九)Deep Q-Learning进阶之Nature DQN

    在强化学习(八)价值函数的近似表示与Deep Q-Learning中,我们讲到了Deep Q-Learning(NIPS 2013)的算法和代码,在这个算法基础上,有很多Deep Q-Learning ...

  8. 强化学习(四)—— DQN系列(DQN, Nature DQN, DDQN, Dueling DQN等)

    1 概述 在之前介绍的几种方法,我们对值函数一直有一个很大的限制,那就是它们需要用表格的形式表示.虽说表格形式对于求解有很大的帮助,但它也有自己的缺点.如果问题的状态和行动的空间非常大,使用表格表示难 ...

  9. 【转】【强化学习】Deep Q Network(DQN)算法详解

    原文地址:https://blog.csdn.net/qq_30615903/article/details/80744083 DQN(Deep Q-Learning)是将深度学习deeplearni ...

  10. 【转载】 强化学习(十一) Prioritized Replay DQN

    原文地址: https://www.cnblogs.com/pinard/p/9797695.html ------------------------------------------------ ...

随机推荐

  1. 荣获“5G MEC优秀商用案例奖”,阿里云边缘计算发力新零售

    4月24日,在中国联通合作伙伴大会的 “5G MEC(Mobile Edge Computing,移动边缘计算)边缘云赋能行业数字化转型”分论坛上,阿里云“基于5G边缘计算的新零售应用案例”荣获201 ...

  2. huyingsakai的Python学习day1:计算机硬件

    1.python是什么?Python是一门编程语言 2.什么是编程语言?(*****)程序员和计算机沟通交流的介质 3.什么是编程?(*****)编程就是程序员想把内心表达的方法用某种计算机语言思维表 ...

  3. 18-2 djanjo中间件和orm多对多操作,以及ajax

    一  中间件 0 怎样使用中间件 在setting配置文件里面注册你的中间件,如下: 'mymiddleware.MD1', 前面是文件名,后面是类名 然后在你的mymiddleware文件里导入: ...

  4. PyODPS DataFrame 的代码在哪里跑

    在使用 PyODPS DataFrame 编写数据应用时,尽管编写的是同一个脚本文件,但其中的代码会在不同位置执行,这可能导致一些无法预期的问题,本文介绍当出现相关问题时,如何确定代码在何处执行,以及 ...

  5. @loj - 2483@「CEOI2017」Building Bridges

    目录 @desription@ @solution@ @accepted code@ @details@ @another solution@ @another code@ @desription@ ...

  6. php实现第三方登录

    1. oAuth2.0原理 网站为了方便用户快速的登录系统,都会提供使用知名的第三方平台账号进行快速登录的功能,第三方登录都是基于oAuth2.0标准来实现的.下面详细分析[基于账号密码授权]和[基于 ...

  7. sqlserver 序号重新计算

    DBCC CHECKIDENT('leshua_TradeData',NORESEED) DBCC CHECKIDENT('表名',NORESEED)

  8. Transformer的PyTorch实现

    Google 2017年的论文 Attention is all you need 阐释了什么叫做大道至简!该论文提出了Transformer模型,完全基于Attention mechanism,抛弃 ...

  9. selenium webdriver学习(七)------------如何处理alert、confirm、prompt对话框( 转)

    selenium webdriver学习(七)------------如何处理alert.confirm.prompt对话框 博客分类: Selenium-webdriver alertpromptc ...

  10. EC Round 33 F. Subtree Minimum Query 主席树/线段树合并

    这题非常好!!! 主席树版本 很简单的题目,给一个按照指定节点的树,树上有点权,你需要回答给定节点的子树中,和其距离不超过k的节点中,权值最小的. 肯定首先一想,按照dfs序列建树,然后按照深度为下标 ...