注意特殊情况!最长上升子序列!!poj2533
简单的动归。用O(n^2)的算法也能过。但是有个细节!刚开始ans初始化为0时是错的!!!要初始化为1。因为只有1个数的时候,下面的循环是不会执行的。。。。。或者特判。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN = ;
int dp[MAXN], a[MAXN]; int main()
{
int N;
while (scanf("%d", &N) == )
{
for (int i = ; i <= N; i++) {
scanf("%d", &a[i]);
dp[i] = ;
}
int ans = ;//初始化为1!!!N==1下面循环不会执行。
for (int i = ; i <= N; i++)
{
for (int j = ; j<i; j++) {
if (a[i]>a[j])
dp[i] = max(dp[i], dp[j] + );
}
ans = max(ans, dp[i]);
}
//if (N==1)
// ans=1;
printf("%d\n", ans);
}
return ;
}
注意特殊情况!最长上升子序列!!poj2533的更多相关文章
- POJ-2533最长上升子序列(DP+二分)(优化版)
Longest Ordered Subsequence Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 41944 Acc ...
- POJ2533 最长递增子序列
描述: 7 1 7 3 5 9 4 8 输出4 最长递增子序列为1 3 5 9,不必连续. 解法: 三种思路: 转化为最长公共子序列(n^2),动态规划(n^2),不知叫什么解法(nlogn). 解法 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- 最长下降子序列O(n^2)及O(n*log(n))解法
求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...
- 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题
先要搞明白:最长公共子串和最长公共子序列的区别. 最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...
- 准备NOIP2017 最长公共子序列(模版)
一些概念: (1)子序列: 一个序列A = a1,a2,--an,中任意删除若干项,剩余的序列叫做A的一个子序列.也可以认为是从序列A按原顺序保留任意若干项得到的序列.例如: 对序列 1,3,5, ...
- 51nod 1006 最长公共子序列Lcs(经典动态规划)
传送门 Description 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdkscab ab是两个串的子序列,abc也是 ...
- 最长公共子序列PK最长公共子串
1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. (1)递归方法求最长公共子序列的长度 1) ...
- 动态规划(一)——最长公共子序列和最长公共子串
注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式 ...
- 动态规划 - 最长公共子序列(LCS)
最长公共子序列也是动态规划中的一个经典问题. 有两个字符串 S1 和 S2,求一个最长公共子串,即求字符串 S3,它同时为 S1 和 S2 的子串,且要求它的长度最长,并确定这个长度.这个问题被我们称 ...
随机推荐
- getBoundingClientRect介绍
getBoundingClientRect用于获取元素相对与浏览器视口的位置 由于getBoundingClientRect()已经是w3c标准,所以不用担心兼容,不过在ie下还是有所区别 { top ...
- line-height:150%/1.5em与line-height:1.5的区别
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Centos 设置时区
参考网址: http://jingyan.baidu.com/article/636f38bb268a82d6b84610bd.html //打开设置 tzselect //选择 )Asia → )c ...
- spring cloud深入学习(一)-----什么是微服务?什么是rpc?spring cloud简介
近年来,微服务非常的流行,那么为什么是它?简单介绍一下. 为什么是微服务? 微服务架构是一种将单应用程序作为一套小型服务开发的方法,每种应用程序都在其自己的进程中运行,并与轻量级机制(通常是HTTP资 ...
- jeecms 基本架构研究
最近工作需要内容管理系统,下载了jeecms v5 顺便学习一下它的架构: 采用框架为:Hibernate3.3.2+spring3.05+springMVC+freemarker2.3.16 Hib ...
- 沙雕去死吧! 劳资终于弄好了toimcat9 apt和ssl配置
搜一下吧,要不就是不用apr模式,也不用nio模式,直接用bio模式跑的,麻烦问一下,您们都是傻屌吗? APR模式必须要用!!!!! 然后全他妈的用jks证书,然后再提取公钥*.cer,然后再转换为* ...
- new 在C++ 中的用法
我对C++一无所知 看参考手册 来看一下参考手册,总共有三种用法 下面是网站上给出的例子 // operator new example #include <iostream> // st ...
- Laravel 使用 JWT 做 API 认证之tymon/jwt-auth 1.0.0-beta.1实践 - moell - SegmentFault
安装 将"tymon/jwt-auth": "1.0.0-beta.1" 添加到 composer.json 中,执行 composer update Prov ...
- mybatis添加数据返回主键
程序结构图: 表结构: 创表sql: Create Table CREATE TABLE `users` ( `id` int(11) NOT NULL AUTO_INCREMENT, `us ...
- python实现贝叶斯网络的概率推导(Probabilistic Inference)
写在前面 这是HIT2019人工智能实验三,由于时间紧张,代码没有进行任何优化,实验算法仅供参考. 实验要求 实现贝叶斯网络的概率推导(Probabilistic Inference) 具体实验指导书 ...