title author date CreateTime categories
PTA 6-2 多项式求值
lindexi
2018-06-29 15:24:28 +0800
2018-6-14 22:0:41 +0800
C 算法

本题要求实现一个函数

本题要求实现一个函数,计算阶数为n,系数为a[0] ... a[n]的多项式$f(x)=\sum_{i=0}^{n}(a[i]\times x^i)$在x点的值。

函数接口定义

	double f( int n, double a[], double x );

其中n是多项式的阶数,a[]中存储系数,x是给定点。函数须返回多项式f(x)的值。

裁判测试程序样例

#include <stdio.h>

#define MAXN 10

double f( int n, double a[], double x );

int main()
{
int n, i;
double a[MAXN], x; scanf("%d %lf", &n, &x);
for ( i=0; i<=n; i++ )
scanf(“%lf”, &a[i]);
printf("%.1f\n", f(n, a, x));
return 0;
} /* 你的代码将被嵌在这里 */

输入样例

2 1.1
1 2.5 -38.7

输出样例

-43.1

可通过代码

double f(int n, double a[], double x)
{
double sum = 0;
// 如果这时的 n 大于最大的数值,就返回比他小 1 的值
if (n >= MAXN)
{
n = MAXN - 1;
} // 这个值用来做中间的计算,也就是计算 x 的中间计算
// 为什么 temp 默认值会是 1 ? 原因就是无论多大的数
// 100000000^0 等于 1 double temp = 1; for (int i = 0; i <= n; i++)
{
// 第 1 次 是 x^0 刚好就是现在 temp 的值
sum = sum + a[i] * temp;
// 进行第 2 次计算 x^1 = x = temp * x
temp = temp * x;
} return sum;
} /*
// 里面存在x的多少次方,就需要重新定义一个函数来写,如果直接写在代码,代码很不好看
// 但是因为有时间的限制,所以不能使用这个方式,这个方式是每个 x 都需要重新计算多少次方
// 而比较快的方式是下一次的计算使用上一次计算的结果
// 在工程的开发,要尽量避免这种优化
// 但是在写题目到是可以这样考虑
// 每次计算的 x 的方都比原来的大 1 次,也就是我第 2 次的计算可以用到第 1 次计算的结果
double Pow(double x, int count)
{
double sum = x; // 任何一个数的0次都是等于多少?
if (0 == count)
{
// 100000000^0
return 1;
} // 这里使用 i = 1 因为这里的值默认 sum 就是等于 x
// 如输入 x^2 那么就是 x = x count = 2
// 如果这里的 i = 0 开始就会首先设置 sum = x;
// sum 会循环两次,于是返回 x^3 和需要的不一样
for (int i = 1; i < count; i++)
{
//sum = sum * x;
sum *= x;
} return sum;
} double f(int n, double a[], double x)
{
double sum = 0;
if (n >= MAXN)
{
n = MAXN - 1;
} for (int i = 0; i <= n; i++)
{
sum = sum + a[i] * Pow(x, i);
} return sum;
} */

考点:

  1. 大概的输入

  2. 是否可以在下一次运算使用上一次的值

  3. 阅读题目能力

第2个考点是有些问题,如果比较会设计的小伙伴,就会写出我注释的代码

在工程使用是建议使用被注释的代码,但是被注释的代码会多了一次循环,于是会运行超时

第3个考点在于一开始的 n 的值,i <= n的循环和 i < n 的循环次数不相同

另外for (int i = 0; i < n; i++)for (int i = 1; i < n; i++)的循环次数也不相同,都是相差 1 ,在于初始化 i 的大小和判断循环。

因为 PTA 没有告诉说代码的输出是什么,而且输出在哪里出错了,所以对于初学者还是比较难的,很多很难知道自己的程序在哪错了。一个建议是使用 CodeBlock 进行调试或者 VisualStudio 调试。

两个调试是不相同,可以看到 CodeBlock 支持比较简单的程序,而且使用也很简单。比较推荐简单的代码使用 CodeBlock ,如果训练的要求是实际使用,那么建议使用 VisualStudio 。可以从安装的时候看到 VisualStuio 很大,而且开始部署环境也是比较困难。但是 VisualStudio 可以开发几乎任何的软件。

下载CodeBlock请到官网:Download binary

下载 VisualStudio 请到官网 Visual Studio

在部署完成VisualStudio 之后,可以使用我修改的代码运行。需要注意在 VisualStduio 需要使用 scanf_s 替换scanf,其他几乎不需要修改。

下面的代码复制之后就可以在 VisualStudio 运行调试,注意 VisualStudio

// JisnaicasManawashar.cpp: 定义控制台应用程序的入口点。

#include "stdafx.h"

#define MAXN 10

double f(int n, double a[], double x);

int main()
{
int n, i;
double a[MAXN], x; //scanf("%d %lf", &n, &x);
//for (i = 0; i <= n; i++)
// scanf("%lf", &a[i]); n = 2;
x = 1.1;
//1 2.5 -38.7
a[0] = 1;
a[1] = 2.5;
a[2] = -38.7; printf("%.1f\n", f(n, a, x));
return 0;
} double f(int n, double a[], double x)
{
double sum = 0;
// 如果这时的 n 大于最大的数值,就返回比他小 1 的值
if (n >= MAXN)
{
n = MAXN - 1;
} // 这个值用来做中间的计算,也就是计算 x 的中间计算
// 为什么 temp 默认值会是 1 ? 原因就是无论多大的数
// 100000000^0 等于 1 double temp = 1; for (int i = 0; i <= n; i++)
{
// 第 1 次 是 x^0 刚好就是现在 temp 的值
sum = sum + a[i] * temp;
// 进行第 2 次计算 x^1 = x = temp * x
temp = temp * x; // 第1次 sum = 1
// 第2次 sum = 3.75
// 第3次 sum = -43.1
} return sum;
} /*
// 里面存在x的多少次方,就需要重新定义一个函数来写,如果直接写在代码,代码很不好看
// 但是因为有时间的限制,所以不能使用这个方式,这个方式是每个 x 都需要重新计算多少次方
// 而比较快的方式是下一次的计算使用上一次计算的结果
// 在工程的开发,要尽量避免这种优化
// 但是在写题目到是可以这样考虑
// 每次计算的 x 的方都比原来的大 1 次,也就是我第 2 次的计算可以用到第 1 次计算的结果
double Pow(double x, int count)
{
double sum = x; // 任何一个数的0次都是等于多少?
if (0 == count)
{
// 100000000^0
return 1;
} // 这里使用 i = 1 因为这里的值默认 sum 就是等于 x
// 如输入 x^2 那么就是 x = x count = 2
// 如果这里的 i = 0 开始就会首先设置 sum = x;
// sum 会循环两次,于是返回 x^3 和需要的不一样
for (int i = 1; i < count; i++)
{
//sum = sum * x;
sum *= x;
} return sum;
} double f(int n, double a[], double x)
{
double sum = 0;
if (n >= MAXN)
{
n = MAXN - 1;
} for (int i = 0; i <= n; i++)
{
sum = sum + a[i] * Pow(x, i);
} return sum;
} */

<script type="text/javascript" async src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML">

</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
</script>

2018-6-29-PTA-6-2-多项式求值的更多相关文章

  1. PTA 6-2 多项式求值

    PTA 6-2 多项式求值 本题要求实现一个函数 本题要求实现一个函数,计算阶数为n,系数为a[0] ... a[n]的多项式f(x)=∑i=0n(a[i]×xi)" role=" ...

  2. 多项式求值问题(horner规则)——Python实现

    # 多项式求值(Horner规则) # 输入:A[a0,a1,a2...an],x的值 # 输出:给定的x下多项式的值p   # Horner迭代形式实现 1 # 在此修改初值 2 A = [2, 6 ...

  3. PTA之多项式求值

    时间限制: 400ms 内存限制: 64MB 代码长度限制: 16KB 函数接口定义: double f( int n, double a[], double x ); 其中n是多项式的阶数,a[]中 ...

  4. PTA基础编程题目集6-2多项式求值(函数题)

    本题要求实现一个函数,计算阶数为n,系数为a[0] ... a[n]的多项式f(x)=∑​i=0​n​​(a[i]×x​i​​) 在x点的值. 函数接口定义: double f( int n, dou ...

  5. 多项式求值 n维多项式 Horner解法

    #include<iostream> using namespace std; template<class T> T ploy(T *coeff,int n,const T& ...

  6. C006:多项式求值 horner法则

    代码: #include "stdafx.h" int _tmain(int argc, _TCHAR* argv[]) { float x; do{ printf("E ...

  7. 多项式函数插值:多项式形式函数求值的Horner嵌套算法

    设代数式序列 $q_1(t), q_2(t), ..., q_{n-1}(t)$ ,由它们生成的多项式形式的表达式(不一定是多项式): $$p(t)=x_1+x_2q_1(t)+...x_nq_1(t ...

  8. 2018.12.30 洛谷P4238 【模板】多项式求逆

    传送门 多项式求逆模板题. 简单讲讲? 多项式求逆 定义: 对于一个多项式A(x)A(x)A(x),如果存在一个多项式B(x)B(x)B(x),满足B(x)B(x)B(x)的次数小于等于A(x)A(x ...

  9. 记2018/4/29 qbxt 测试

    记 2018/4/29  qbxt 测试(提高基础班) 简单的 NOIP 模拟赛 竞赛时间: 2018 年 4 月 29 日 13:30-17:00 题目名称 乘法 求和 计数 输入文件名 mul.i ...

随机推荐

  1. Python对于封装性的看法

  2. python 只导入某个对象

  3. Linux下C 更改字符在终端的显示颜色

    使用\033[01;04;32;41m之类的配色方案在需要输出显示的文本之前,可以改变应用程序输出文本的颜色或者背景颜色. 比如: #include <stdio.h> int main( ...

  4. Symmetric Tree 深度优先搜索

    Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...

  5. 【Django入坑之路】admin组件

    1:settings.py 中的 INSTALLED_APPS # Application definition INSTALLED_APPS = [ 'django.contrib.admin', ...

  6. poj1459 最大流Dinic

    比较简单. #include<stdio.h> #include<string.h> #include<queue> #define maxn 110 #defin ...

  7. Directx11学习笔记【二十一】 封装键盘鼠标响应类

    原文:Directx11学习笔记[二十一] 封装键盘鼠标响应类 摘要: 本文由zhangbaochong原创,转载请注明出处:http://www.cnblogs.com/zhangbaochong/ ...

  8. KiCad 5.1.4 无法覆铜?

    KiCad 5.1.4 无法覆铜? 群里有小伙伴发现焊盘无法覆铜,只能靠手工连接. 这就奇怪了,正常情况不会出现的这种现象的. 分析了很多可能,比较间隙太小,有试着调过,但还是连接不上. 把封装的所有 ...

  9. java执行sql语句使用别名时显示Column '***' not found

    java执行sql语句使用别名时显示Column '*' not found 在做一个小项目时遇到个问题,执行sql语句使用别名时总是报sql异常 Column '*' not found,折腾半天终 ...

  10. 捕捉WPF应用程序中XAML代码解析异常

    原文:捕捉WPF应用程序中XAML代码解析异常 由于WPF应用程序中XAML代码在很多时候是运行时加载处理的.比如DynamicResource,但是在编译或者运行的过程中,编写的XAML代码很可能有 ...