ZR1153
ZR1153
首先我们可以发现一个比较简单的容斥做法
直接暴力枚举\(2^m\)个限制强制不合法,算贡献
注意如果两个限制冲突那么答案为0
直接暴力差分就好了
这样就有了快乐的\(30\)分了
接下来考虑对容斥进行DP
把所有点区间按照右端点排序,如果出来两个颜色相同的区间一个包含了另外一个,那么大区间是没有用的,因为小区间满足条件大区间一定满足
我们设\(f_{i}\)表示满足第\(i\)个限制的带容斥系数的方案数
那么转移我们就枚举上一个没有交的区间
\]
其中\(g_x\)表示\(1-x\)位置满足\(1-x\)的所有容斥之后的限制的前缀和
也就是说
\]
就是看看第\(i\)位置上的限制满足还是不满足综合考虑的前缀和
继续回到求\(f_i\)的式子
既然\(i\)的这个限制要容斥,那么强制他不被满足,前面就是对所有和他没有交的限制求一个总的容斥
后面算有交的部分的贡献,必须满足和当前限制的颜色相同,
我们排序之后,有交的集合是一个区间,我们二分找到对应位置维护前缀和即可
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#include<set>
#include<map>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const int N = 4e5 + 3;
const LL mod = 998244353;
struct seg{
int li,ri;
int xi;
}a[N],b[N];
vector <pii> co[N];
vector <LL> h[N];
LL f[N],g[N];
int n,m,s,cnt;
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
inline bool cmp(seg x,seg y){
return x.ri < y.ri || (x.ri == y.li && x.li > y.li);
}
inline LL find(int x,int rr){
// printf("%d %d\n",x,rr);
int l = 0,r = h[x].size() - 1,ans = -1;
if(r < 0) return 0;
while(l <= r){
int mid = (l + r) >> 1;
if(co[x][mid].se < rr) l = mid + 1,ans = mid;
else r = mid - 1;
}
// printf("%d %d %d %lld\n",l,r,ans,ans == -1 ? h[x].back() : h[x].back() - h[x][ans]);
return ans == -1 ? h[x].back() : h[x].back() - h[x][ans];
}
inline LL mo(LL x){
if(x >= mod) x-= mod;
return x;
}
int main(){
n = read(),m = read(),s = read();
for(int i = 1;i <= m;++i){
a[i].li = read();
a[i].ri = read();
a[i].xi = read();
}
sort(a + 1,a + m + 1,cmp);
for(int i = 1;i <= m;++i){
bool flag = 0;
if(!co[a[i].xi].size()) co[a[i].xi].push_back(mk(a[i].li,a[i].ri));
else{
pii x = co[a[i].xi].back();
if(x.fi >= a[i].li && x.se <= a[i].ri) flag = 1;
else co[a[i].xi].push_back(mk(a[i].li,a[i].ri));
}
if(!flag) b[++cnt] = a[i];
}
m = cnt;
memcpy(a,b,sizeof(a));
// puts("new::");
// for(int i = 1;i <= m;++i) cerr << a[i].li << " " << a[i].ri << " " << a[i].xi << endl;
// puts("next::");
int now = 1;
f[0] = g[0] = 1;
for(int i = 1;i <= m;++i){
// cerr << "dsdas::"<< a[i].li << " " << a[i].ri << " " << a[i].xi << endl;
for(;now < a[i].ri;now++) g[now] = (g[now] + g[now - 1] * s) % mod;
f[i] = (-g[a[i].li - 1] + mod);
f[i] -= find(a[i].xi,a[i].li);
if(f[i] < 0) f[i] += mod;
LL gg = h[a[i].xi].empty() ? 0 : h[a[i].xi].back();
h[a[i].xi].push_back(mo(gg + f[i]));
g[a[i].ri] = mo(g[a[i].ri] + f[i]);
}
for(;now <= n;++now) g[now] = (g[now] + g[now - 1] * s) % mod;
printf("%lld\n",g[n]);
return 0;
}
ZR1153的更多相关文章
随机推荐
- 【时光回溯】【JZOJ3566】【GDKOI2014】阶乘
题目描述 输入 第一行有一个正整数T,表示测试数据的组数. 接下来的T行,每行输入两个十进制整数n和base. 输出 对于每组数据,输出一个十进制整数,表示在base进制下,n!结尾的零的个数. 样例 ...
- python已安装包的查看方法和requirements.text的使用
1.已经安装包的查看方法 命令pip freeze 2. 批量导出命令 pip freeze >requirements.txt 3. 批量导入命令 pip install -r requir ...
- 神舟mini pcs-b wifi-bt 驱动
最新mini pcs ssd硬盘版 安装win10后蓝牙设备找不到,显示usb获取设备符失败, 卸载wifi驱动,安装以下驱动,两个链接应该都可以. TW: https://downloadcente ...
- bzoj1821 部落划分
Description 聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗.只是,这一切都成 ...
- mysql通过日志恢复数据库
案例:http://www.linuxidc.com/Linux/2012-11/74005.htm http://blog.csdn.net/ssrc0604hx/article/details/1 ...
- CF772E Verifying Kingdom
CF772E Verifying Kingdom 有趣的交互题(交互题都挺有意思的) %ywy 增量法构造 考虑加入了前i个叶子 那么树是前i个叶子构成的虚树! 最后n个叶子构成的虚树就是答案! 怎样 ...
- tp5 上传视频到七牛云
废话少说直接上代码 html <!DOCTYPE html> <html> <head> <title></title> </head ...
- 【JZOJ4855】【NOIP2016提高A组集训第6场11.3】荷花池塘
题目描述 于大夫建造了一个美丽的池塘,用来让自己愉快的玩耍.这个长方形的池子被分割成了M 行 和N 列的正方形格子.池塘中有些地方是可以跳上的荷叶,有些地方是不能放置荷叶也不 能跳上的岩石,其他地方是 ...
- 【IOS】异常捕获 拒绝闪退 让应用从容的崩溃 UncaughtExceptionHandler
尽管大家都不愿意看到程序崩溃,但可能崩溃是每一个应用必须面对的现实.既然崩溃已经发生.无法阻挡了.那我们就让它崩也崩得淡定点吧. IOS SDK中提供了一个现成的函数 NSSetUncaughtExc ...
- [java]struts2 模型驱动 2016-05-01 21:40 702人阅读 评论(19) 收藏
一开始敲网上商城的时候,对于数据的传递方式我是很惊艳了一把的,感觉特别高大上,就感觉,竟然不用像.net一样取谁的值,给谁赋值这样,只要需要用的时候,简单的get一下就ok了,简直高大上啊. 然后发现 ...