ZR1153
ZR1153
首先我们可以发现一个比较简单的容斥做法
直接暴力枚举\(2^m\)个限制强制不合法,算贡献
注意如果两个限制冲突那么答案为0
直接暴力差分就好了
这样就有了快乐的\(30\)分了
接下来考虑对容斥进行DP
把所有点区间按照右端点排序,如果出来两个颜色相同的区间一个包含了另外一个,那么大区间是没有用的,因为小区间满足条件大区间一定满足
我们设\(f_{i}\)表示满足第\(i\)个限制的带容斥系数的方案数
那么转移我们就枚举上一个没有交的区间
\]
其中\(g_x\)表示\(1-x\)位置满足\(1-x\)的所有容斥之后的限制的前缀和
也就是说
\]
就是看看第\(i\)位置上的限制满足还是不满足综合考虑的前缀和
继续回到求\(f_i\)的式子
既然\(i\)的这个限制要容斥,那么强制他不被满足,前面就是对所有和他没有交的限制求一个总的容斥
后面算有交的部分的贡献,必须满足和当前限制的颜色相同,
我们排序之后,有交的集合是一个区间,我们二分找到对应位置维护前缀和即可
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#include<set>
#include<map>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const int N = 4e5 + 3;
const LL mod = 998244353;
struct seg{
int li,ri;
int xi;
}a[N],b[N];
vector <pii> co[N];
vector <LL> h[N];
LL f[N],g[N];
int n,m,s,cnt;
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
inline bool cmp(seg x,seg y){
return x.ri < y.ri || (x.ri == y.li && x.li > y.li);
}
inline LL find(int x,int rr){
// printf("%d %d\n",x,rr);
int l = 0,r = h[x].size() - 1,ans = -1;
if(r < 0) return 0;
while(l <= r){
int mid = (l + r) >> 1;
if(co[x][mid].se < rr) l = mid + 1,ans = mid;
else r = mid - 1;
}
// printf("%d %d %d %lld\n",l,r,ans,ans == -1 ? h[x].back() : h[x].back() - h[x][ans]);
return ans == -1 ? h[x].back() : h[x].back() - h[x][ans];
}
inline LL mo(LL x){
if(x >= mod) x-= mod;
return x;
}
int main(){
n = read(),m = read(),s = read();
for(int i = 1;i <= m;++i){
a[i].li = read();
a[i].ri = read();
a[i].xi = read();
}
sort(a + 1,a + m + 1,cmp);
for(int i = 1;i <= m;++i){
bool flag = 0;
if(!co[a[i].xi].size()) co[a[i].xi].push_back(mk(a[i].li,a[i].ri));
else{
pii x = co[a[i].xi].back();
if(x.fi >= a[i].li && x.se <= a[i].ri) flag = 1;
else co[a[i].xi].push_back(mk(a[i].li,a[i].ri));
}
if(!flag) b[++cnt] = a[i];
}
m = cnt;
memcpy(a,b,sizeof(a));
// puts("new::");
// for(int i = 1;i <= m;++i) cerr << a[i].li << " " << a[i].ri << " " << a[i].xi << endl;
// puts("next::");
int now = 1;
f[0] = g[0] = 1;
for(int i = 1;i <= m;++i){
// cerr << "dsdas::"<< a[i].li << " " << a[i].ri << " " << a[i].xi << endl;
for(;now < a[i].ri;now++) g[now] = (g[now] + g[now - 1] * s) % mod;
f[i] = (-g[a[i].li - 1] + mod);
f[i] -= find(a[i].xi,a[i].li);
if(f[i] < 0) f[i] += mod;
LL gg = h[a[i].xi].empty() ? 0 : h[a[i].xi].back();
h[a[i].xi].push_back(mo(gg + f[i]));
g[a[i].ri] = mo(g[a[i].ri] + f[i]);
}
for(;now <= n;++now) g[now] = (g[now] + g[now - 1] * s) % mod;
printf("%lld\n",g[n]);
return 0;
}
ZR1153的更多相关文章
随机推荐
- IDEA 运行maven项目配置
- 关于spring中<util:/>的配置
解决redis设置缓存时间找到的帖子,我这个初学者需要学习的还是很多的. 原文地址:http://www.doc100.net/bugs/t/216322/index.html 探索<util/ ...
- 【JZOJ4923】【NOIP2017提高组模拟12.17】巧克力狂欢
题目描述 Alice和Bob有一棵树(无根.无向),在第i个点上有ai个巧克力.首先,两人个选择一个起点(不同的),获得点上的巧克力:接着两人轮流操作(Alice先),操作的定义是:在树上找一个两人都 ...
- 将Gradle项目发布到Maven Central库中
本文主要介绍如何一个由gradle构建的项目部署到Maven Central. 网上大部分都是介绍如何将由maven构建的项目部署到Maven Central.与Gradle相关的比较少. 申请账号 ...
- oracle如何穿过防火墙连接数据库
这个问题只会在WIN平台出现,UNIX平台会自动解决. 解决方法: 在服务器端的SQLNET.ORA应类似 SQLNET.AUTHENTICATION_SERVICES= (NTS) NAMES.DI ...
- dba和表的备份与恢复
每个oracle数据库应该至少有一名数据库管理员(dba),对于一个小的数据库,一个dba就够了,但是对于一个大的数据库可能需要多个dba分别担负不同的管理职责.那么一个数据库管理员的主要工作是什么呢 ...
- 网络流24题 最小路径覆盖(DCOJ8002)
题目描述 给定有向图 G=(V,E) G = (V, E)G=(V,E).设 P PP 是 G GG 的一个简单路(顶点不相交)的集合.如果 V VV 中每个顶点恰好在 P PP 的一条路上,则称 P ...
- time,datetime模块
time模块 时间戳 返回1970年1月1日 00:00:00开始按秒计算时间偏移量 time_stamp = time.time() print(time_stamp,type(time_stamp ...
- idea建立maven聚合项目 标签: mavenidea 2017-01-08 15:33 2477人阅读 评论(30)
上篇文章写了如何用idea建立maven项目,idea建立maven聚合项目我感觉不如eclipse方便,不过并不是没有办法,下面写一下这个小教程. 建立maven project 建立maven p ...
- Centos7.3-mysql5.7复制安装过程
一.环境 192.168.56.102 为主服务器 192.168.56.101 为从服务器 Mysql5.7.20 二进制安装包环境 1. 下载免编译安装包并进行安装 从官网下载 mysql-5.7 ...