CF 622F (拉格朗日插值)
解题思路
比较经典的一道题目。第一种方法是差分,就是假设\(k=3\),我们打一个表。
0 1 9 36 100 225
1 8 27 64 125
7 19 37 61
12 18 24
6 6
表中第一行为所要求的前缀和,后面的\(f[i][j]=f[i-1][j]+f[i-1][j-1]\),就是每个数字等于上面的数字\(-\)左上的数字,减到最后发现只剩一样的数字。此时第一行的后面的所有数字只与后面每一行的第一个数字有关,而且系数恰好是一个组合数。比如说我们要算第一行第\(10\)个数字,也就是\(n=10\)的时候的答案。那么
\]
这个的证明可以根据实际意义来,从第二行第一个数字到第一行第十个数字一共走\(10\)步,期中\(1\)步向上走,那么就为\(C(10,1)\)。
所以我们暴力算出前\(k+1\)项的值,然后递推即可。差分法的时间复杂度为\(O(k^2)\)的,无法通过此题。但是这个思想值得学习。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#define int long long
using namespace std;
const int MAXN = 1005;
const int MOD = 1e9+7;
int n,k,inv[MAXN],fac[MAXN];
int f[MAXN][MAXN],ans;
inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=ret*x%MOD;
x=x*x%MOD;
}
return ret;
}
inline int C(int n,int m){
return fac[n]*inv[m]%MOD*inv[n-m]%MOD;
}
signed main(){
scanf("%lld%lld",&n,&k);fac[0]=1;
for(int i=1;i<=n;i++) fac[i]=fac[i-1]*i%MOD;inv[n]=fast_pow(fac[n],MOD-2);
for(int i=n-1;~i;i--) inv[i]=inv[i+1]*(i+1)%MOD;
for(int i=1;i<=k+1;i++) f[0][i]=f[0][i-1]+fast_pow(i,k),f[0][i]%=MOD;
if(n<=k+1) {printf("%lld\n",f[0][n]);return 0;}
for(int i=1;i<=k+1;i++)
for(int j=i;j<=k+1;j++) f[i][j]=f[i-1][j]-f[i-1][j-1],f[i][j]=(f[i][j]+MOD)%MOD;
for(int i=1;i<=k+1;i++)
ans=(ans+f[i][i]*C(n,i)%MOD)%MOD;
printf("%lld\n",ans);
return 0;
}
第二种方法自然就是拉格朗日插值法,对于一段连续的值来说,拉格朗日插值法可以在\(O(k)\)内解决,具体来说就是将定义式变形。
\]
因为带入的值是连续的,所以上面一定是两段连续的乘积,我们要维护一个前缀乘积后缀乘积拼起来。下面的话可以看成两个阶乘,正负取决于\(n-i\)的奇偶性,这样就可以\(O(n)\)的算出结果。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#define int long long
using namespace std;
const int MAXN = 1000005;
const int MOD = 1e9+7;
int n,k,inv[MAXN],y[MAXN];
int pre[MAXN],suf[MAXN],ans,fac[MAXN];
int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=ret*x%MOD;
x=x*x%MOD;
}
return ret;
}
signed main(){
scanf("%lld%lld",&n,&k);
pre[0]=1;for(int i=1;i<=k+2;i++) pre[i]=pre[i-1]*(n-i)%MOD;
suf[k+3]=1;for(int i=k+2;i;i--) suf[i]=suf[i+1]*(n-i)%MOD;
fac[0]=1;for(int i=1;i<=k+2;i++) fac[i]=fac[i-1]*i%MOD;
inv[k+2]=fast_pow(fac[k+2],MOD-2);
for(int i=k+1;~i;i--) inv[i]=inv[i+1]*(i+1)%MOD;int s1,s2;
for(int i=1;i<=k+2;i++) y[i]=(y[i-1]+fast_pow(i,k))%MOD;
for(int i=1;i<=k+2;i++){
s1=pre[i-1]*suf[i+1]%MOD;
s2=inv[i-1]*inv[k+2-i]*(((k+2-i)&1)?-1:1)%MOD;
ans=((ans+s1*s2%MOD*y[i]%MOD)%MOD+MOD)%MOD;
}
printf("%lld\n",ans);
return 0;
}
CF 622F (拉格朗日插值)的更多相关文章
- CF 622F The Sum of the k-th Powers——拉格朗日插值
题目:http://codeforces.com/problemset/problem/622/F 发现 sigma(i=1~n) i 是一个二次的多项式( (1+n)*n/2 ),sigma(i=1 ...
- CF 622 F The Sum of the k-th Powers —— 拉格朗日插值
题目:http://codeforces.com/contest/622/problem/F 设 f(x) = 1^k + 2^k + ... + n^k 则 f(x) - f(x-1) = x^k ...
- Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值
The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...
- 常系数齐次线性递推 & 拉格朗日插值
常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...
- 快速排序 and 拉格朗日插值查找
private static void QuictSort(int[] zu, int left, int right) { if (left < right) { ; ; ]; while ( ...
- BZOJ3601 一个人的数论 莫比乌斯反演、高斯消元/拉格朗日插值
传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i ...
- 【XSY1537】五颜六色的幻想乡 数学 生成树计数 拉格朗日插值
题目大意 有一个\(n\)个点\(m\)条边的图,每条边有一种颜色\(c_i\in\{1,2,3\}\),求所有的包括\(i\)条颜色为\(1\)的边,\(j\)条颜色为\(2\)的边,\(k\) ...
- 【BZOJ2655】calc DP 数学 拉格朗日插值
题目大意 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: 长度为给定的\(n\). \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. \(a_1, ...
- 【Luogu4781】【模板】拉格朗日插值
[Luogu4781][模板]拉格朗日插值 题面 洛谷 题解 套个公式就好 #include<cstdio> #define ll long long #define MOD 998244 ...
随机推荐
- eclipse 彻底修改复制后的项目名称
1.项目右键 --> properties --> Web Project Settings --> 修改Context root 2.web.xml 3.工作空间中找到当前项目下. ...
- spring接收文件资源
提交请求的contentType为multipart/form-data 图片提交在form中的名称为file 后端接收示例 @RequestMapping("/picture") ...
- spring启动异步线程
大纲: spring启动异步线程 spring配置线程池 一.spring启动异步线程 spring启动异步线程方法就是在方法上加上注解@Async,然后启动类或配置类上加上注解@EnableAsyn ...
- React中Class的概念
Class的概念 一.简介 javaScript是面向对象的编程语言,可以说所以的能够被描述的事.物或抽象的东西,都是可以是对象.而我们记录的对象,会有具有同样的属性和行为. 为了节省重写相同的代码. ...
- Linux常用查看日志命令tail
常用查看日志操作语句: tail web.2016-06-06.log -n 300 -f 查看底部即最新300条日志记录,并实时刷新 grep 'ni ...
- Qt第三方库QCustomPlot——QCustomPlot解读
这个小部件类,对于QCustomPlot的所有方面都有所体现 下面阅读它的函数: 函数组织顺序为: 基本设置---添加图线---删除图线---添加额外Item---层次管理---坐标轴管理----导出 ...
- [NOIP模拟测试7]visit 题解(组合数学+CRT+Lucas定理)
Orz 因为有T的限制,所以不难搞出来一个$O(T^3)$的暴力dp 但我没试 据说有30分? 正解的话显然是组合数学啦 首先$n,m$可能为负,但这并没有影响, 我们可以都把它搞成正的 即都看作向右 ...
- (转)Vmware vSphere 5.0系列教程 vSphere网络原理及vSwitch简介 及一个host两个网卡说明
转:http://andygao.blog.51cto.com/323260/817518/ 在一个物理网络拓扑中,通常都是路由器-交换机-PC机的连接,不同的服务器和PC机,通过交换机的连接而相互连 ...
- Qt 线程基础(QThread、QtConcurrent、QThreadPool等)
使用线程 基本上有种使用线程的场合: 通过利用处理器的多个核使处理速度更快. 为保持GUI线程或其他高实时性线程的响应,将耗时的操作或阻塞的调用移到其他线程. 何时使用其他技术替代线程 开发人员使 ...
- 红黑数之原理分析及C语言实现
目录: 1.红黑树简介(概念,特征,用途) 2.红黑树的C语言实现(树形结构,添加,旋转) 3.部分面试题() 1.红黑树简介 1.1 红黑树概念 红黑树(Red-Black Tree,简称R-B T ...