hdu6607 min25筛+杜教筛+伯努利数求k次方前缀和
推导过程类似https://www.cnblogs.com/acjiumeng/p/9742073.html
前面部分min25筛,后面部分杜教筛,预处理min25筛需要伯努利数
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
//#include <bits/extc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define mt make_tuple
//#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define sqr(x) ((x)*(x))
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
#define bpc __builtin_popcount
#define base 1000000000000000000ll
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
#define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=mul(ans,a,c);a=mul(a,a,c),b>>=1;}return ans;}
using namespace std;
//using namespace __gnu_pbds;
const ld pi=acos(-1);
const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=200000+10,maxn=10000000+10,inf=0x3f3f3f3f;
bool mark[maxn];
int prime[maxn],cnt,K,phi[maxn],cnt1,f[maxn];
ll g[N],id[2][N],val[N],sum[N],up,n;
ll inv2=qp(2,mod-2),inv6=qp(6,mod-2),inv[111],c[111][111],b[111];
map<ll,ll>phii;
ll getb(int n)
{
if(b[n]!=-1)return b[n];
if(n==0)return b[0]=1;
ll ans=0;
for(int i=0;i<n;i++)
add(ans,c[n+1][i]*getb(i)%mod);
ans=-ans*inv[n+1]%mod;
ans=(ans%mod+mod)%mod;
return b[n]=ans;
}
ll get(ll n,ll k)
{
ll ans=0;
for(int i=1;i<=k+1;i++)
add(ans,c[k+1][i]*b[k+1-i]%mod*qp((n+1)%mod,i)%mod);
return ans*inv[k+1]%mod;
}
void pre()
{
phi[1]=1;
for(int i=2;i<maxn;i++)
{
if(!mark[i])prime[++cnt1]=i,phi[i]=i-1;
for(int j=1;j<=cnt1&&i*prime[j]<maxn;j++)
{
mark[i*prime[j]]=1;
if(i%prime[j]==0)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-1);
}
}
for(int i=1;i<maxn;i++)
{
f[i]=1ll*i*i%mod*phi[i]%mod;
f[i]+=f[i-1];
if(f[i]>=mod)f[i]-=mod;
}
inv[1]=1;
for(ll i=2;i<111;i++)
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(int i=0;i<111;i++)
{
c[i][0]=c[i][i]=1;
for(int j=1;j<i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
}
memset(b,-1,sizeof b);
getb(110);
}
void init()
{
up=sqrt(n);
for(int i=1;prime[i]<=up;i++)sum[i]=(sum[i-1]+qp(prime[i],K+1))%mod,cnt=i;
int m=0;
for(ll i=1,j;i<=n;i=j+1)
{
j=n/(n/i);
val[++m]=n/i;
g[m]=get(n/i,K+1);//insert val
sub(g[m],1ll);
if(n/i<=up)id[0][n/i]=m;
else id[1][i]=m;
}
for(int j=1;j<=cnt;j++)for(int i=1;i<=m&&1ll*prime[j]*prime[j]<=val[i];i++)
{
ll te=val[i]/prime[j];
int k=(te<=up)?id[0][te]:id[1][n/te];
sub(g[i],1ll*(sum[j]-sum[j-1]+mod)*(g[k]-sum[j-1]+mod)%mod);
}
}
ll getf(ll n)
{
if(n<maxn)return f[n];
if(phii.find(n)!=phii.end())return phii[n];
ll ans=n%mod*((n+1)%mod)%mod*inv2%mod;ans=ans*ans%mod;
for(ll i=2,j;i<=n;i=j+1)
{
j=n/(n/i);
ll tj=j%mod,ti=i%mod;
ll te=tj*(tj+1)%mod*(2ll*tj+1)%mod*inv6%mod-(ti-1)*ti%mod*(2ll*ti-1)%mod*inv6%mod;
te=(te%mod+mod)%mod;
sub(ans,te*getf(n/i)%mod);
}
return phii[n]=ans;
}
int main()
{
pre();
int T;scanf("%d",&T);
while(T--)
{
scanf("%lld%d",&n,&K);
init();
ll ans=0;
for(ll i=1,j;i<=n;i=j+1)
{
j=n/(n/i);
int k1=(j<=up)?id[0][j]:id[1][n/j];
int k2=(i-1<=up)?id[0][i-1]:id[1][n/(i-1)];
// printf("%lld %lld\n",(g[k1]-g[k2]+mod)%mod,getf(n/i));
add(ans,getf(n/i)*(g[k1]-g[k2]+mod)%mod);
}
printf("%lld\n",ans);
}
return 0;
}
/********************
********************/
hdu6607 min25筛+杜教筛+伯努利数求k次方前缀和的更多相关文章
- 【51nod1847】奇怪的数学题(Min_25筛+杜教筛)
题面 传送门 题解 这题有毒--不知为啥的错误调了半天-- 令\(f(i)={sgcd(i)}\),那么容易看出\(f(i)\)就是\(i\)的次大质因子,用\(i\)除以它的最小质因子即可计算 于是 ...
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
- 杜教筛 && bzoj3944 Sum
Description Input 一共T+1行 第1行为数据组数T(T<=10) 第2~T+1行每行一个非负整数N,代表一组询问 Output 一共T行,每行两个用空格分隔的数ans1,ans ...
- 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】
题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...
- 【知识总结】线性筛_杜教筛_Min25筛
首先感谢又强又嘴又可爱脸还筋道的国家集训队(Upd: WC2019 进候选队,CTS2019 不幸 rk6 退队)神仙瓜 ( jumpmelon ) 给我讲解这三种筛法~~ 由于博主的鸽子属性,这篇博 ...
- Mobius 反演与杜教筛
积性函数 积性函数 指对于所有互质的整数 aaa 和 bbb 有性质 f(ab)=f(a)f(b)f(ab)=f(a)f(b)f(ab)=f(a)f(b) 的数论函数. 特别地,若所有的整数 aaa ...
- LOJ# 572. 「LibreOJ Round #11」Misaka Network 与求和(min25筛,杜教筛,莫比乌斯反演)
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质 ...
- 一些求和式的估算 & 杜教筛时间复杂度证明
本文内容概要: \(A=\sum\limits_{i=1}^n\dfrac1{\sqrt i}=1+\dfrac1{\sqrt2}+\cdots+\dfrac1{\sqrt n}\) \(O(\sqr ...
- 51nod 1244 莫比乌斯函数之和(杜教筛)
[题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...
随机推荐
- python接口自动化(Cookie_绕过验证码登录)
python接口自动化(Cookie_绕过验证码登录) 有些登录的接口会有验证码,例如:短信验证码,图形验证码等,这种登录的验证码参数可以从后台获取(或者最直接的可查数据库) 获取不到也没关系,可以 ...
- JavaScript小实例-文本循环变色效果
在现实生活中我们常常看到文字循环变色的效果,此效果不仅能让人们印象深刻,还提高了美观度,代码及注释如下: <!DOCTYPE html> <html> <head> ...
- AutoFac mvc和WebAPI 注册Service (接口和实现)
AutoFac mvc和WebAPI 注册Service (接口和实现) 1.准备组件版本:Autofac 3.5.0 Autofac.Integration.Mvc 3.3.0.0 (I ...
- userdel -删除使用者帐号及相关档案
总览 SYNOPSIS userdel [-r] login 描述 userdel 命 令 修 改 系 统 帐 号 档 删 除 所 有 login 会 参 考 的 部 份 . 使 用 者 名 称 必 ...
- python系统模块
Python中大多数系统接口都集中在两个模块:sys和os.这么说有点过于简单化 还有一些其他的表转模块也属于这个领域他们包括: glob 用于文件名的扩展 socket 用于网络连接和进程间通信(I ...
- 在小程序中引入有赞的vant框架组件
这里给大家讲解小程序中如何引入vant组件(我这里是采用小程序的云开发模板) 1.首先在项目的miniprogram文件夹右键在终端中打开,输入命令npm init初始化生成一个package.jso ...
- 云栖干货回顾 | 云原生数据库POLARDB专场“硬核”解析
POLARDB是阿里巴巴自主研发的云原生关系型数据库,目前兼容三种数据库引擎:MySQL.PostgreSQL.Oracle.POLARDB的计算能力最高可扩展至1000核以上,存储容量可达100TB ...
- 阿里巴巴持续投入,etcd 正式加入 CNCF
摘要: 2018 年 12 月 11 日,在 KubeCon + CloudNativeCon 北美峰会上,etcd 项目正式加入 CNCF. 2018 年 12 月 11 日,在 KubeCon + ...
- 自定义alert 确定、取消功能
以删除为例,首先新建html <table border="1" cellpadding="0" cellspacing="0" id ...
- 绘制窗体渐变背景的函数[delphi]
绘制窗体渐变背景的函数,三个参数分别代表起始颜色,终止颜色,绘制方向procedure TForm1.Draw(StartColor:TColor;EndColor:TColor;Direction: ...