Description

如今的道路收费发展很快。道路的密度越来越大,因此选择最佳路径是很现实的问题。城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用。

路径是连续经过的道路组成的。总时间是各条道路旅行时间的和,总费用是各条道路所支付费用的总和。一条路径越快,或者费用越低,该路径就越好。严格地说,如果一条路径比别的路径更快,而且不需要支付更多费用,它就比较好。反过来也如此理解。如果没有一条路径比某路径更好,则该路径被称为最小路径。

这样的最小的路径有可能不止一条,或者根本不存在路径。

问题:读入网络,计算最小路径的总数。费用时间都相同的两条最小路径只算作一条。你只要输出不同种类的最小路径数即可。

Input

第一行有四个整数,城市总数 \(n\),道路总数 \(m\),起点和终点城市 \(s\),\(e\);

接下来的 \(m\) 行每行描述了一条道路的信息,包括四个整数,两个端点 \(p\),\(r\),费用 \(c\),以及时间 \(t\);

两个城市之间可能有多条路径连接。

Output

仅一个数,表示最小路径的总数。

Sample Input

4 5 1 4

2 1 2 1

3 4 3 1

2 3 1 2

3 1 1 4

2 4 2 4

Sample Output

2

HINT


题解

首先,题目中对最小路径的描述有些歧义,实际上最小路径 \(u\) 应满足不存在路径 \(v\) 使 \(cost[v] \leq cost[u]\),\(len[v] \leq len[u]\)

这可以说是一道 \(DP\) 题,也可以说是一道分层图 \(SPFA\)(本质是一样的)

分层图 \(SPFA\) 要好写一些。

设 \(f[i][j]\) 表示走到第 \(i\) 个结点,费用为 \(j\) 时的最短路

“转移”就是 \(f[k][j+cost]=min(f[k][j+cost],f[i][j]+len)\) ,不断更新

之后类似二维偏序,用树状数组就行了。


代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue> using namespace std; const int N = 105;
typedef pair<int,int> P; struct node {
int v,len,cost;
node *next;
}pool[N*6],*h[N];
int cnt;
void addedge(int u,int v,int len,int cost){
node *p=&pool[++cnt],*q=&pool[++cnt];
p->v=v;p->next=h[u];h[u]=p;p->len=len;p->cost=cost;
q->v=u;q->next=h[v];h[v]=q;q->len=len;q->cost=cost;
} int n,m,s1,s2,S,T;
int f[N][N*N],vis[N][N*N];
queue<P> que;
void spfa(){
for(int i=1;i<=n;i++)
for(int j=0;j<=s1;j++) f[i][j]=1e8;
f[S][0]=0; vis[S][0]=1; que.push(P(S,0));
while(!que.empty()){
int u=que.front().first,c=que.front().second,v;
que.pop();
vis[u][c]=0;
s2=max(s2,f[u][c]);
if(u==T) continue;
for(node *p=h[u];p;p=p->next)
if(c+p->cost<=s1 && f[v=p->v][c+p->cost]>f[u][c]+p->len){
f[v][c+p->cost]=f[u][c]+p->len;
if(!vis[v][c+p->cost]){
vis[v][c+p->cost]=1;
que.push(P(v,c+p->cost));
}
}
}
} int d[N*N];
int lowbit(int x) { return x&(-x); }
int add(int x,int y){
while(x<=s2){
d[x]+=y;
x+=lowbit(x);
}
}
int sum(int x){
int ret=0;
while(x){
ret+=d[x];
x-=lowbit(x);
}
return ret;
} int main()
{
int x,y,len,c,ans=0;
scanf("%d%d%d%d",&n,&m,&S,&T);
for(int i=0;i<m;i++){
scanf("%d%d%d%d",&x,&y,&c,&len);
addedge(x,y,len,c);
s1=max(s1,c);
}
s1*=(n-1); spfa();
s2++;
for(int i=0;i<=s1;i++)
if(f[T][i]!=1e8){
if(sum(f[T][i]+1)==0) ans++;
add(f[T][i]+1,1);
}
printf("%d\n",ans); return 0;
}

[bzoj1375] [Baltic2002] Bicriterial routing 双调路径的更多相关文章

  1. Bicriterial routing 双调路径 HYSBZ - 1375(分层最短路)

    Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...

  2. bzoj1375 双调路径

    Description 来越多,因此选择最佳路径是很现实的问题.城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用.路径由连续的道路组成.总时间是各条道路旅行时间的和,总费用是各条道路所支 ...

  3. 题解 P5530 [BalticOI 2002]双调路径

    P5530 [BalticOI 2002]双调路径 输入样例: 4 5 1 4 2 1 2 1 3 4 3 1 2 3 1 2 3 1 1 4 2 4 2 4 样例如下图 样例说明: 从1到4有4条路 ...

  4. P5530 [BOI 2002]双调路径

    题意描述 [BOI 2002]双调路径 题意描述的确实不是很清楚(出题人惜字如金). 给定一张有 \(n\) 个点,\(m\) 条边的无向图,每条边有两个权值,分别表示经过这个点的代价和时间. 同时给 ...

  5. [BalticOI2002]Bicriterial routing

    OJ题号: BZOJ1375.ECNU1468 题目大意: 给定一个无向连通图,每条边有两个权值w1和w2.定义一条路径是优秀的当且仅当没有别的路径满足两个权值的和都比该路径小,求s到t的优秀路径条数 ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. 8.2/baltic神(水)题

    summary:10 bzoj1334: Description N个政党要组成一个联合内阁,每个党都有自己的席位数. 现在希望你找出一种方案,你选中的党的席位数要大于总数的一半,并且联合内阁的席位数 ...

  8. Neutron 理解 (3): Open vSwitch + GRE/VxLAN 组网 [Netruon Open vSwitch + GRE/VxLAN Virutal Network]

    学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...

  9. nodejs开发指南读后感

    nodejs开发指南读后感 阅读目录 使用nodejs创建http服务器; supervisor的使用及nodejs常见的调式代码命令了解; 了解Node核心模块; ejs模板引擎 Express 理 ...

随机推荐

  1. BIO、NIO、AIO 个人总结

    BIO(blocking io) BIO即为阻塞IO,在网络编程中,它会在建立连接和等待连接的对端准备数据阶段进行阻塞.因此为了支撑高并发的用户访问,一般会为每一个socket 连接分配一个线程.但使 ...

  2. 阿里云 CentOS8 Repo

    # CentOS-Base.repo # # The mirror system uses the connecting IP address of the client and the # upda ...

  3. boostrap-非常好用但是容易让人忽略的地方【4】:Font Awesome

    font-awesome基本用法 官方代码传送门 font-awesome在bootstrap中的特殊用法(这个才是重点) 要点归纳1(官方) 官方代码传送门 要点归纳2(我的) <a href ...

  4. Qt4.5 QFrame(相当于Delphi里的TPanel,有各种凹凸方式)

    QFrame类是有框架的窗口部件的基类. QPopupMenu使用这个来把菜单“升高”,高于周围屏幕.QProgressBar有“凹陷”的外观.QLabel有平坦的外观.这些有框架的窗口部件可以被改变 ...

  5. vue学习笔记(二)vue的生命周期和钩子函数

    前言 通过上一章的学习,我们已经初步的了解了vue到底是什么东西,可以干什么,而这一篇博客主要介绍vue的生命周期和它常用的钩子函数,如果有学过java的园友可能有接触到在学习servlet的时候学过 ...

  6. Java并发编程系列-(8) JMM和底层实现原理

    8. JMM和底层实现原理 8.1 线程间的通信与同步 线程之间的通信 线程的通信是指线程之间以何种机制来交换信息.在编程中,线程之间的通信机制有两种,共享内存和消息传递. 在共享内存的并发模型里,线 ...

  7. OpenSsl库 Rsa的简单使用

    环境的配置可以参考http://www.cnblogs.com/yangyquin/p/5284530.html 网络上传输的数据很容易被抓包,如果不加密,那么网络数 据很容易被窃取,诸如用户名.密码 ...

  8. vc调用mysql数据库操作例子

    这里归纳了C API可使用的函数 函数 描述 mysql_affected_rows() 返回上次UPDATE.DELETE或INSERT查询更改/删除/插入的行数. mysql_autocommit ...

  9. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

  10. 探索 模块打包 exports和require 与 export和import 的用法和区别

    菜单快捷导航: CommonJS 之 exports和require用法 ES6 Module 之 export 和 import 用法 CommonJS和ES6 Module的区别 循环依赖 和 解 ...