最短路径Dijkstra算法和Floyd算法整理、
转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html
Dijkstra算法
1.定义概览
Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。
问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)
2.算法描述
1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。
2)算法步骤:
a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。
b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。
c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。
d.重复步骤b和c直到所有顶点都包含在S中。
执行动画过程如下图
3.算法代码实现:

const int MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0)
{
bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
for(int i=1; i<=n; ++i)
{
dist[i] = A[v0][i];
S[i] = false; // 初始都未用过该点
if(dist[i] == MAXINT)
prev[i] = -1;
else
prev[i] = v0;
}
dist[v0] = 0;
S[v0] = true;
for(int i=2; i<=n; i++)
{
int mindist = MAXINT;
int u = v0; // 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!S[j]) && dist[j]<mindist)
{
u = j; // u保存当前邻接点中距离最小的点的号码
mindist = dist[j];
}
S[u] = true;
for(int j=1; j<=n; j++)
if((!S[j]) && A[u][j]<MAXINT)
{
if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
{
dist[j] = dist[u] + A[u][j]; //更新dist
prev[j] = u; //记录前驱顶点
}
}
}
}

4.算法实例
先给出一个无向图
用Dijkstra算法找出以A为起点的单源最短路径步骤如下
Floyd算法
1.定义概览
Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。
2.算法描述
1)算法思想原理:
Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)
从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。
2).算法描述:
a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。
3).Floyd算法过程矩阵的计算----十字交叉法
方法:两条线,从左上角开始计算一直到右下角 如下所示
给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点
相应计算方法如下:
最后A3即为所求结果
3.算法代码实现

typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph;
void Floyd(MGraph g)
{
int A[MAXV][MAXV];
int path[MAXV][MAXV];
int i,j,k,n=g.n;
for(i=0;i<n;i++)
for(j=0;j<n;j++)
{
A[i][j]=g.edges[i][j];
path[i][j]=-1;
}
for(k=0;k<n;k++)
{
for(i=0;i<n;i++)
for(j=0;j<n;j++)
if(A[i][j]>(A[i][k]+A[k][j]))
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
}

算法时间复杂度:O(n3)
最短路径Dijkstra算法和Floyd算法整理、的更多相关文章
- 最短路径——Dijkstra算法和Floyd算法
Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...
- 【转】最短路径——Dijkstra算法和Floyd算法
[转]最短路径--Dijkstra算法和Floyd算法 标签(空格分隔): 算法 本文是转载,原文在:最短路径-Dijkstra算法和Floyd算法 注意:以下代码 只是描述思路,没有测试过!! Di ...
- 最短路径—Dijkstra算法和Floyd算法
原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...
- 最短路径—Dijkstra算法和Floyd算法【转】
本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...
- 图的最短路径——dijkstra算法和Floyd算法
dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...
- 【转载】最短路径—Dijkstra算法和Floyd算法
注意:以下代码 只是描述思路,没有测试过!! Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始 ...
- 最短路径—Dijkstra 算法和Floyd 算法
某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很困扰. 现在 ...
- 【转载】Dijkstra算法和Floyd算法的正确性证明
说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正 ----------- ...
- Dijkstra算法和Floyd算法的正确性证明
说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正 ------------- ...
随机推荐
- chrome 浏览器 添加访问助手来访问网上应用商店
chrome浏览器的强大之处,在于可以chrome浏览器的扩展程序来实现很多功能.然而不能下载扩展程序.可以借助chrome访问助手来实现: 下载chrome访问助手:https://pan.baid ...
- Hdu 1269 强连通判定
题目链接 迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- https比http到底那里安全?
HTTPS和HTTP的概念 HTTPS(全称:Hypertext Transfer Protocol over Secure Socket Layer),是以安全为目标的HTTP通道,简单讲是HTTP ...
- 【等价的穿越】Burnside引理&Pólya计数法
Problem 起源: SGU 294 He's Circle 遗憾的是,被吃了. Poj有道类似的: Mission 一个长度为n(1≤n≤24)的环由0,1,2组成,求有多少本质不同的环. 实际上 ...
- Spring_Bean的生命周期
init-method="init" destroy-method="destory" 指定初始化和销毁方法 创建Bean后置处理器 <!-- 实现Bea ...
- 利用JDBC连接Oracle数据库(转)
http://blog.csdn.net/wahaha1_/article/details/8512438 JDBC是Sun公司制定的一个可以用Java语言连接数据库的技术. 一.JDBC基础知识 J ...
- Spark day06
SparkStreaming简介 SparkStreaming是流式处理框架,是Spark API的扩展,支持可扩展.高吞吐量.容错的实时数据流处理,实时数据的来源可以是:Kafka, Flume, ...
- 大数据技术之HA 高可用
HDFS HA高可用 1.1 HA概述 1)所谓HA(High Available),即高可用(7*24小时不中断服务). 2)实现高可用最关键的策略是消除单点故障.HA严格来说应该分成各个组件的HA ...
- CF789D Mike and distribution
题目连接 一道人类智慧题.... 这道题目可以转化为在a,b中的选出一些位置,使得这些位置处的值加起来大于没有选的位置的值 我们按照a的权值排序,选择第一个元素,其与元素两两分组,每组选择b更大的那一 ...
- 阿里云发布Apsara SA系列混合云存储阵列
3月21日,2019北京阿里云峰会上,阿里云正式发布Apsara SA系列混合云存储阵列,融合IP SAN,FC SAN,NAS和OSS对象存储协议于一体,同时实现了本地数据中心架构和公共云存储的无缝 ...