bzoj 1636: [Usaco2007 Jan]Balanced Lineup -- 线段树
1636: [Usaco2007 Jan]Balanced Lineup
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 772 Solved: 560线段树裸题。。。
Description
For the daily milking, Farmer John's N cows (1 <= N <= 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height. Farmer John has made a list of Q (1 <= Q <= 200,000) potential groups of cows and their heights (1 <= height <= 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.
每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John 决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连续的牛来进行比赛. 但是为了避免水平悬殊,牛的身高不应该相差太大. John 准备了Q (1 <= Q <= 180,000) 个可能的牛的选择和所有牛的身高 (1 <= 身高 <= 1,000,000). 他想知道每一组里面最高和最低的牛的身高差别.
注意: 在最大数据上, 输入和输出将占用大部分运行时间.
Input
* Line 1: Two space-separated integers, N and Q. * Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i * Lines N+2..N+Q+1: Two integers A and B (1 <= A <= B <= N), representing the range of cows from A to B inclusive.
Output
Sample Input
to a reply and indicates the difference in height between the
tallest and shortest cow in the range.
Sample Output
3
0
#include<cstdio>
#include <iostream>
#define M 50010
int max(int a,int b){return a>b?a:b;}
int min(int a,int b){return a<b?a:b;}
struct tree{int l,r,minn,maxx;}tr[*M];
int a[M];
void make(int l,int r,int p)
{
tr[p].l=l;
tr[p].r=r;
if(l==r){
tr[p].minn=a[l];
tr[p].maxx=a[l];
return ;
}
int mid=(l+r)>>;
make(l,mid,p<<);
make(mid+,r,p<<|);
tr[p].minn=min(tr[p<<].minn,tr[p<<|].minn);
tr[p].maxx=max(tr[p<<].maxx,tr[p<<|].maxx);
}
int fmin(int l,int r,int x)
{
if(tr[x].l==l&&tr[x].r==r) return tr[x].minn;
int mid=(tr[x].l+tr[x].r)>>,q=x<<;
if(r<=mid) return fmin(l,r,q);
else if(l>mid) return fmin(l,r,q+);
else return min(fmin(l,mid,q),fmin(mid+,r,q+));
}
int fmax(int l,int r,int x)
{
if(tr[x].l==l&&tr[x].r==r) return tr[x].maxx;
int mid=(tr[x].l+tr[x].r)>>;
if(r<=mid) return fmax(l,r,x<<);
else if(l>mid) return fmax(l,r,x<<|);
else return max(fmax(l,mid,x<<),fmax(mid+,r,x<<|));
}
int main()
{
int n,m,i,x,y;
scanf("%d%d",&n,&m);
for(i=;i<=n;i++) scanf("%d",&a[i]);
make(,n,);
for(i=;i<m;i++){
scanf("%d%d",&x,&y);
printf("%d\n",fmax(x,y,)-fmin(x,y,));
}
}
bzoj 1636: [Usaco2007 Jan]Balanced Lineup -- 线段树的更多相关文章
- BZOJ 1636: [Usaco2007 Jan]Balanced Lineup
noip要来了,刷点基础水题. 题意: RMQ,给你N个数,Q个询问,每次查询[l,r]内,最大值减最小值是多少. 写的ST. 代码: #include<iostream> #includ ...
- BZOJ 1699: [Usaco2007 Jan]Balanced Lineup排队
1699: [Usaco2007 Jan]Balanced Lineup排队 Description 每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. ...
- BZOJ 1699: [Usaco2007 Jan]Balanced Lineup排队( RMQ )
RMQ.. ------------------------------------------------------------------------------- #include<cs ...
- bzoj 1699: [Usaco2007 Jan]Balanced Lineup排队 分块
1699: [Usaco2007 Jan]Balanced Lineup排队 Time Limit: 5 Sec Memory Limit: 64 MB Description 每天,农夫 John ...
- bzoj 1699: [Usaco2007 Jan]Balanced Lineup排队【st表||线段树】
要求区间取min和max,可以用st表或线段树维护 st表 #include<iostream> #include<cstdio> using namespace std; c ...
- BZOJ 1699 [Usaco2007 Jan]Balanced Lineup排队 线段树
题意:链接 方法:线段树 解析: 题意即题解. 多次询问区间最大值与最小值的差.显然直接上线段树或者rmq维护区间最值就可以. 代码: #include <cstdio> #include ...
- ST表 || RMQ问题 || BZOJ 1699: [Usaco2007 Jan]Balanced Lineup排队 || Luogu P2880 [USACO07JAN]平衡的阵容Balanced Lineup
题面:P2880 [USACO07JAN]平衡的阵容Balanced Lineup 题解: ST表板子 代码: #include<cstdio> #include<cstring&g ...
- 【BZOJ】1636: [Usaco2007 Jan]Balanced Lineup(rmq+树状数组)
http://www.lydsy.com/JudgeOnline/problem.php?id=1636 (我是不会说我看不懂题的) 裸的rmq.. #include <cstdio> # ...
- BZOJ1636: [Usaco2007 Jan]Balanced Lineup
1636: [Usaco2007 Jan]Balanced Lineup Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 476 Solved: 345[ ...
随机推荐
- 中断中处理延时及一些函数的调用规则(中断调i2c驱动有感)--中断中的延迟delay与printk函数的冲突【转】
转自:http://blog.csdn.net/psvoldemort/article/details/8222371 1,中断处理程序中不能使用有睡眠功能的函数,如ioremap,kmalloc,m ...
- binlog2sql 回滚误操作
参考过在资料: https://github.com/wuyongshenghub/mysqlbinlog2sql https://www.cnblogs.com/xuanzhi201111/p/66 ...
- Django 国内最全教程
https://code.ziqiangxuetang.com/django/django-tutorial.html
- IntelJ IDEA 进行Java Web开发+热部署+一些开发上的问题
基本上像放弃MyEclipse或者Eclipse了,因为IDEA现在也有对应的版本旗舰版和社区版了,而且使用更贴心,更给力,为什么还要选一个难用的要死的东西呢? 最近要开发一个Java Web项目,所 ...
- jstorm系列-2:入门
有了基本的概念之后,我们用jstorm来做一点小事情吧 做一个很无聊的事情:给定一个时间戳,输出对应的问候语 规则是:时间戳的十位对应的数字对应不同的时间段,0-2代表早上,3代表中午,4-6代表下午 ...
- Java显式锁学习总结之一:概论
我们都知道在java中,当多个线程需要并发访问共享资源时需要使用同步,我们经常使用的同步方式就是synchronized关键字,事实上,在jdk1.5之前,只有synchronized一种同步方式.而 ...
- 《深入浅出MyBatis技术原理与实战》——6. MyBatis的解析和运行原理
MyBatis的运行分为两大部分,第一部分是读取配置文件缓存到Configuration对象,用以创建SqlSessionFactory,第二部分是SqlSession的执行过程. 6.1 涉及的技术 ...
- Gas Station——又是一道经典问题
There are N gas stations along a circular route, where the amount of gas at station i is gas[i]. You ...
- HAProxy配置代理
1.代理需求 原始URL:https://www.xxx.com/mili_app/News/NewsServlet.do?processID=getNewsList&type=1&p ...
- ASP.NET MVC5(一)—— URL路由
using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.We ...