【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割
题目描述
输入
输出
第一行包含一个整数K,表示最多能选取的祭祀点的个数。
样例输入
4 4
1 2
3 4
3 2
4 2
样例输出
2
题解
Floyd+拆点+网络流最小割
看了网上那些高端的做法,不明觉厉。
最多能保留几个点,即最少需要去掉几个点,即最小割。
先用Floyd求出两个点是否能同时选择(即不连通),然后建图,如果两个不同的点i和j不能同时选择,则加i->j'的边,容量为inf。
再加源点s->i的边,容量为1,加i'->汇点t的边,容量为1。
然后跑dinic即可,答案为n-maxflow。
UPD:这个应该叫Dilworth定理吧,DAG最小链覆盖等于最长反链,本题要求最长反链可以转化为最小链覆盖来求,最小链覆盖求法见上。
#include <cstdio>
#include <cstring>
#include <queue>
#define inf 0x7fffffff
using namespace std;
queue<int> q;
int map[110][110] , head[210] , to[12000] , val[12000] , next[12000] , cnt = 1 , dis[210] , s , t;
void add(int x , int y , int z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
bool bfs()
{
int x , i;
while(!q.empty()) q.pop();
memset(dis , 0 , sizeof(dis));
dis[s] = 1;
q.push(s);
while(!q.empty())
{
x = q.front();
q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , m , i , j , k , x , y , ans = 0;
scanf("%d%d" , &n , &m);
s = 0 , t = 2 * n + 1;
for(i = 1 ; i <= m ; i ++ )
scanf("%d%d" , &x , &y) , map[x][y] = 1;
for(k = 1 ; k <= n ; k ++ )
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
map[i][j] |= map[i][k] & map[k][j];
for(i = 1 ; i <= n ; i ++ )
add(s , i , 1) , add(i , s , 0) , add(i + n , t , 1) , add(t , i + n , 0);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
if(i != j && map[i][j])
add(i , j + n , inf) , add(j + n , i , 0);
while(bfs())
ans += dinic(s , inf);
printf("%d\n" , n - ans);
return 0;
}
【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割的更多相关文章
- BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3236 Solved: 1651 [Submit] ...
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
- BZOJ1143: [CTSC2008]祭祀river 网络流_Floyd_最大独立集
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
- BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...
- BZOJ1143 [CTSC2008] 祭祀river
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题目大意: 给你n个点,点与点之间由有向边相连.如果u能到达v的话,那么他们就不能同 ...
- bzoj1143: [CTSC2008]祭祀river 最长反链
题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...
- [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)
题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...
- [BZOJ1143][CTSC2008]祭祀river(最长反链)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...
- bzoj1143: [CTSC2008]祭祀river && bzoj27182718: [Violet 4]毕业旅行
其实我至今不懂为啥强联通缩点判入度会错... 然后这个求的和之前那道组合数学一样,就是最长反链=最小链覆盖=最大独立集. #include<cstdio> #include<iost ...
随机推荐
- git学习笔记(一)——从已存在的远程仓库克隆
应用场景:在公司电脑把脚本上传到公司的gitlab上,在家里想继续写: 问题: 家里的之前代码连的是github的仓库,需要把公钥替换成公司gitlab的. 环境:win10,pycharm,git ...
- Linux命令应用大词典-第5章 显示文本和文件内容
5.1 cat:显示文本文件 5.2 more:分页显示文本文件 5.3 less:回卷显示文本文件 5.4 head:显示指定文件前若干行 5.5 tail:查看文件末尾数据 5.6 nl:显示文件 ...
- 第5章 Linux网络编程基础
第5章 Linux网络编程基础 5.1 socket地址与API 一.理解字节序 主机字节序一般为小端字节序.网络字节序一般为大端字节序.当格式化的数据在两台使用了不同字节序的主机之间直接传递时,接收 ...
- Request对象及常用方法
Object getAttribute(String name) 获得name的属性,若不存在,则返回null Enumeration getAttributeNames() 返回一个枚举类型的包含r ...
- leetcode-三数之和(java)
三数之和 给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组. 注意:答案中不可 ...
- HTMLTestRunner带饼图
# -*- coding: utf-8 -*- """ A TestRunner for use with the Python unit testing framewo ...
- 聊一聊 Flex 中的 flex-grow、flex-shrink、flex-basis
在使用 flex 布局的时候难以理解的是 flex-grow.flex-shrink.flex-basis 几个属性的用法,下面通过几个例子来演示. flex-basis flex-basis 用于设 ...
- VT-x VT-d 虚拟化在win10中的问题
win10真的是非常非常非常非常非常非常非常非常非常非常坑坑坑坑坑坑坑坑坑坑坑坑坑坑坑坑!!!!!! 自带虚拟Buff不说,我不用竟然会有冲突!!!! 一度让我怀疑,我的CPU VT-x坏掉了!!! ...
- [leetcode-658-Find K Closest Elements]
Given a sorted array, two integers k and x, find the k closest elements to x in the array. The resul ...
- POJ 3084 Panic Room(最大流最小割)
Description You are the lead programmer for the Securitron 9042, the latest and greatest in home sec ...