【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割
题目描述

输入
输出
第一行包含一个整数K,表示最多能选取的祭祀点的个数。
样例输入
4 4
1 2
3 4
3 2
4 2
样例输出
2
题解
Floyd+拆点+网络流最小割
看了网上那些高端的做法,不明觉厉。
最多能保留几个点,即最少需要去掉几个点,即最小割。
先用Floyd求出两个点是否能同时选择(即不连通),然后建图,如果两个不同的点i和j不能同时选择,则加i->j'的边,容量为inf。
再加源点s->i的边,容量为1,加i'->汇点t的边,容量为1。
然后跑dinic即可,答案为n-maxflow。
UPD:这个应该叫Dilworth定理吧,DAG最小链覆盖等于最长反链,本题要求最长反链可以转化为最小链覆盖来求,最小链覆盖求法见上。
#include <cstdio>
#include <cstring>
#include <queue>
#define inf 0x7fffffff
using namespace std;
queue<int> q;
int map[110][110] , head[210] , to[12000] , val[12000] , next[12000] , cnt = 1 , dis[210] , s , t;
void add(int x , int y , int z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
bool bfs()
{
int x , i;
while(!q.empty()) q.pop();
memset(dis , 0 , sizeof(dis));
dis[s] = 1;
q.push(s);
while(!q.empty())
{
x = q.front();
q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , m , i , j , k , x , y , ans = 0;
scanf("%d%d" , &n , &m);
s = 0 , t = 2 * n + 1;
for(i = 1 ; i <= m ; i ++ )
scanf("%d%d" , &x , &y) , map[x][y] = 1;
for(k = 1 ; k <= n ; k ++ )
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
map[i][j] |= map[i][k] & map[k][j];
for(i = 1 ; i <= n ; i ++ )
add(s , i , 1) , add(i , s , 0) , add(i + n , t , 1) , add(t , i + n , 0);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
if(i != j && map[i][j])
add(i , j + n , inf) , add(j + n , i , 0);
while(bfs())
ans += dinic(s , inf);
printf("%d\n" , n - ans);
return 0;
}
【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割的更多相关文章
- BZOJ1143 [CTSC2008]祭祀river 【二分图匹配】
1143: [CTSC2008]祭祀river Time Limit: 10 Sec Memory Limit: 162 MB Submit: 3236 Solved: 1651 [Submit] ...
- 【Floyd】【Dilworth定理】【最小路径覆盖】【匈牙利算法】bzoj1143 [CTSC2008]祭祀river
Dilworth定理,将最长反链转化为最小链覆盖.//貌似还能把最长上升子序列转化为不上升子序列的个数? floyd传递闭包,将可以重叠的最小链覆盖转化成不可重叠的最小路径覆盖.(引用:这样其实就是相 ...
- BZOJ1143: [CTSC2008]祭祀river 网络流_Floyd_最大独立集
Description 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都 会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组 ...
- BZOJ1143 [CTSC2008]祭祀river 二分图匹配 最小链覆盖
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1143 题意概括 给出一个有向图.求最小链覆盖. 题解 首先说两个概念: 链:一条链是一些点的集合, ...
- BZOJ1143 [CTSC2008] 祭祀river
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1143 题目大意: 给你n个点,点与点之间由有向边相连.如果u能到达v的话,那么他们就不能同 ...
- bzoj1143: [CTSC2008]祭祀river 最长反链
题意:在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河道连 ...
- [BZOJ1143][CTSC2008]祭祀river(Dilworth定理+二分图匹配)
题意:给你一张n个点的DAG,最大化选择的点数,是点之间两两不可达. 要从Dilworth定理说起. Dilworth定理是定义在偏序集上的,也可以从图论的角度解释.偏序集中两个元素能比较大小,则在图 ...
- [BZOJ1143][CTSC2008]祭祀river(最长反链)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1143 分析: 最长反链==最小路径覆盖==n-二分图最大匹配数 某神犇对二分图的总结: ...
- bzoj1143: [CTSC2008]祭祀river && bzoj27182718: [Violet 4]毕业旅行
其实我至今不懂为啥强联通缩点判入度会错... 然后这个求的和之前那道组合数学一样,就是最长反链=最小链覆盖=最大独立集. #include<cstdio> #include<iost ...
随机推荐
- 20145202马超《网络对抗》Exp6 信息搜集与漏洞扫描
本实践的目标是掌握信息搜集的最基础技能.具体有(1)各种搜索技巧的应用(2)DNS IP注册信息的查询 (3)基本的扫描技术:主机发现.端口扫描.OS及服务版本探测.具体服务的查点(4)漏洞扫描:会扫 ...
- EL/JSTL-jsp页面更简单的输出方式
1.EL(Expression Language):表达式语言,用于页面输出 格式:${表达式} EL支持四则运算,关系运算[常用eq来比较字符串或判断相等],逻辑运算 EL访问空间内对象,[类.对象 ...
- mongoengine中queryset触发网络访问机制剖析
背景 最近新上线的一个服务,偶尔会有超时告警,其主要逻辑仅仅只是简单的读/写mongodb,而且服务上线初期,流量并不大,因而理论上来说,每次请求都应该很快才对,事实上分析日志也证实90%以上的请求都 ...
- Splay初学习
例题传送门 听YZ哥哥说Splay是一种很神奇的数据结构,所以学习了一下它的最基本操作.O(1)的Spaly. 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(logn)内完成 ...
- 苏州Uber优步司机奖励政策(12月28日到1月3日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- gitlab改root密码
1. ~$ sudo gitlab-rails console production 2.查询要改的用户 irb(main)::> u = User.where().first => #& ...
- 「Python」conda与pip升级所有的包
conda: conda update --a pip: pip freeze --local | grep -v '^-e' | cut -d = -f 1 | xargs -n1 sudo pip ...
- jmeter常用测试元件
1.线程组 线程组是任何测试计划的起点,所有的逻辑控制器和采样器都必须放在线程组下.其他的测试元件(例如监听器)可以直接放在测试计划下,这些测试元件对所有的线程组都生效. 每一个JMeter线程都会完 ...
- Unity编辑器 - 资源批处理工具基类
Unity编辑器 - 资源批处理工具基类 经常要对资源进行批处理,很多时候都是一次性的需求,于是弄个通用脚本. 工具是个弹出面板,处理过程有进度条,如下: 如图,子类只需要重写几个方法: using ...
- Zookeeper 分布式应用
简介 这篇文章是旨在为那些想要利用zookeeper协调服务能力进行分布式应用创建的开发者的入门指导,包括一些理论性和实践性的内容. 文章的前四部分系统的介绍了zookeeper的相关概念,对于理解z ...