BZOJ4597:[SHOI2016]随机序列——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4597
你的面前有N个数排成一行。分别为A1, A2, … , An。你打算在每相邻的两个 Ai和 Ai+1 间都插入一个加号或者减号或者乘号。那么一共有 3^(n-1) 种可能的表达式。你对所有可能的表达式的值的和非常感兴趣。但这毕竟太简单了,所以你还打算支持一个修改操作,可以修改某个Ai 的值。你能够编写一个程序对每个修改都输出修改完之后所有可能表达式的和吗?注意,修改是永久的,也就是说每次修改都是在上一次修改的基础上进行, 而不是在最初的表达式上进行。
(讲个事为了防止我忘了这题怎么做从而写不了题解所以这题解是我边想题边写的233所以可能啰嗦些)
首先我们肯定不可能暴力求和,那么我们打打表看看会怎么样。
当n=2时为2*a1+a1*a2,当n=3时为6*a1+2*a1*a2+a1*a2*a3,当n=4时18*a1+6*a1*a2+2*a1*a2*a3+a1*a2*a3*a4……
我们发现每次的系数都为后一项*3,然而将这个数列放到oeis上查能查到好多,这个结论不一定可靠,于是试图证明它(当然你可以跳过证明,毕竟不严格)。
证明:我们只看a1项系数,于是放乘号的位置只有2^(n-2)个,并且设放乘号个数为i,则乘号合并后的数字显然只有(n-i)个。
此时我们再往合并后的数字里面填符号的话,只有+/-的情况下显然=2^(n-i-1)*a1(剩余的项都被消了)
于是我们得到了a1的个数:sigma(C(n-2,i)*2^(n-i-1))(0<=i<=n-2)。
这个式子很像二项式定理,于是除2再乘2得到2*(2+1)^(n-2)=2*3^(n-2)。
第一项我们证明出来了,那么第二项,第三项……都可以直接推出来,证毕。
那么直接线段树维护即可,懒得说怎么维护了。
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+;
const int p=1e9+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
int qpow(int k,int n){
int res=;
while(n){
if(n&)res=(ll)res*k%p;
k=(ll)k*k%p;n>>=;
}
return res;
}
int n,m,c[N],tr[N*],b[N],q[N],lz[N*];
inline int add(int x,int y){
x+=y;if(x>=p)x-=p;return x;
}
inline int mul(ll x,int y){
return x*y%p;
}
inline void push(int a){
if(lz[a]!=-){
tr[a<<]=mul(tr[a<<],lz[a]);
tr[a<<|]=mul(tr[a<<|],lz[a]);
if(lz[a<<]==-)lz[a<<]=lz[a];
else lz[a<<]=mul(lz[a<<],lz[a]);
if(lz[a<<|]==-)lz[a<<|]=lz[a];
else lz[a<<|]=mul(lz[a<<|],lz[a]);
lz[a]=-;
}
}
void build(int a,int l,int r){
lz[a]=-;
if(l==r){
tr[a]=mul(q[l],b[l]);return;
}
int mid=(l+r)>>;
build(a<<,l,mid);build(a<<|,mid+,r);
tr[a]=add(tr[a<<],tr[a<<|]);
}
void modify(int a,int l,int r,int l1,int r1,int w){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
if(lz[a]==-)lz[a]=w;
else lz[a]=mul(lz[a],w);
tr[a]=mul(tr[a],w);
return;
}
push(a);
int mid=(l+r)>>;
modify(a<<,l,mid,l1,r1,w);modify(a<<|,mid+,r,l1,r1,w);
tr[a]=add(tr[a<<],tr[a<<|]);
}
int main(){
n=read(),m=read();b[]=;
for(int i=;i<=n;i++){
c[i]=read();
b[i]=mul(b[i-],c[i]);
}
q[n]=,q[n-]=;
for(int i=n-;i>=;i--)q[i]=mul(q[i+],);
build(,,n);
while(m--){
int k=read(),v=read();
modify(,,n,k,n,(ll)v*qpow(c[k],p-)%p);
c[k]=v;
printf("%d\n",tr[]);
}
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
BZOJ4597:[SHOI2016]随机序列——题解的更多相关文章
- BZOJ4597 SHOI2016随机序列(线段树)
先考虑题目所说的太简单了的问题.注意到只要把加减号相取反,就可以得到一对除了第一项都互相抵消的式子.于是得到答案即为Σf(i)g(i),其中f(i)为前缀积,g(i)为第i个数前面所有符号均填乘号,第 ...
- BZOJ4597: [Shoi2016]随机序列
Description 你的面前有N个数排成一行.分别为A1, A2, … , An.你打算在每相邻的两个 Ai和 Ai+1 间都插入一个加号或者 减号或者乘号.那么一共有 3^(n-1) 种可能的表 ...
- 【BZOJ4597】[Shoi2016]随机序列 线段树
[BZOJ4597][Shoi2016]随机序列 Description 你的面前有N个数排成一行.分别为A1, A2, … , An.你打算在每相邻的两个 Ai和 Ai+1 间都插入一个加号或者减号 ...
- BZOJ 4597: [Shoi2016]随机序列
4597: [Shoi2016]随机序列 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 255 Solved: 174[Submit][Status ...
- P4340 [SHOI2016]随机序列
题目 P4340 [SHOI2016]随机序列 思维好题 做法 是否觉得水在于你是否发现加减是会抵消的,所以我们只用考虑乘的部分 一块乘只能前面无号(也就是前缀形式)才统计,所以用线段树维护区间前缀乘 ...
- 【bzoj4597】 [Shoi2016]随机序列
可以发现加减号之间可以互相抵消. 真正加到答案里的只有一些前缀积. 记s[i]为a[1]*a[2]*a[3]...*a[i].那s[i]在答案中出现的次数就是2*3^(n-i-1); 修改一个数只会对 ...
- [洛谷P4340][SHOI2016]随机序列
题目大意:有$n(n\leqslant10^5)$个数,每两个数之间可以加入$+-\times$三种符号,$q(q\leqslant10^5)$次询问,每次询问修改一个数后,所有表达式可能的值的和 题 ...
- bzoj 4597||洛谷P4340 [Shoi2016]随机序列
https://www.lydsy.com/JudgeOnline/problem.php?id=4597 https://www.luogu.org/problemnew/show/P4340 妄图 ...
- BZOJ4557:[JLOI2016/SHOI2016]侦察守卫——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4557 小R和B神正在玩一款游戏.这款游戏的地图由N个点和N-1条无向边组成,每条无向边连接两个点, ...
随机推荐
- 180706-BigDecimal除法的精度问题
BigDecimal除法的精度问题 在使用BigDecimal的除法时,遇到一个鬼畜的问题,本以为的精度计算,结果使用返回0,当然最终发现还是自己的使用姿势不对导致的,因此记录一下,避免后面重蹈覆辙 ...
- SQL 从入门到 DBA 删库跑路
SQL 从入门到 DBA 删库跑路 一.基础 人员信息表: ID 姓名 性别 出生 婚否 学历 工资 工会 35009449 孙xx 男 1978-2-17 未婚 中专 3000 TRUE 35000 ...
- Linux命令应用大词典-第2章 获取帮助
2.1 help:查看内部Shell命令帮助信息 2.2 man:显示在线手册页 2.3 manpath:查看和设置man手册页的查询路径 2.4 info:阅读info格式的文件 2.5 pinfo ...
- CSP201709-1:打酱油
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- 主题模型 LDA 入门
主题模型 LDA 入门(附 Python 代码) 一.主题模型 在文本挖掘领域,大量的数据都是非结构化的,很难从信息中直接获取相关和期望的信息,一种文本挖掘的方法:主题模型(Topic Model ...
- LeetCode - 459. Repeated Substring Pattern - O(n)和O(n^2)两种思路 - KMP - (C++) - 解题报告
题目 题目链接 Given a non-empty string check if it can be constructed by taking a substring of it and appe ...
- Linux内核设计笔记8——下半部
# 下半部笔记 1. 软中断 软中断实现 软中断是在编译期间静态分配,其结构如下所示,结构中包含一个接受该结构体指针作为参数的action函数. struct softirq_action{ void ...
- HADOOP docker(四):安装hive
1.hive简介2.安装hive2.1 环境准备2.1.1 下载安装包2.1.2 设置hive用户的环境变量2.1.3 hive服务端配置文件2.1.4 hive客户端配置文件2.1.4 分发hive ...
- HDU 1250 Hat's Fibonacci(高精度)
Problem Description A Fibonacci sequence is calculated by adding the previous two members the sequen ...
- 【转】redis安装与配置
一.安装 1.官方:http://www.redis.cn/download.html 2.下载.解压.编译 wget http://download.redis.io/releases/redis- ...