1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun, in CVPR 2015.

Goal: learn and predict how fashionable a person looks on a photograph, and suggest subtle improvements that user could make to improve her/his appeal.

This paper proposes a Conditional Random Field model that jointly reasons about several fashionability factors such as the type of outfit (全套装备) and garments (衣服) the user is wearing, the type of the user, the photograph's setting (e.g., the scenery behind the user), and the fashionability score.

Importantly, the proposed model is able to give rich feed back to the user, conveying which garments or even scenery she/he should change in order to improve fashionability.

This paper collects a novel dataset that consists of 144,169 user posts from a clothing-oriented social website chictopia.com. In a post, a user publishes one to six photographs of her/himself wearing a new outfit. Generally each photograph shows a different angle of the user or zoons in on different garments. User sometimes also add a description of the outfit, and/or tags of the types and colors of the garments they are wearing.

Discovering fashion from weak data:

The energy of the CRF as a sum of energies encoding unaries for each variable as well as non-parametric pairwise pothentials which reflect the correlations between the different random variables:

User specific features:

  • the logarithm of the number of fans
  • use rekognition to compute attributes of all the images of each post, keep the features for the image with the highest score.

Then compute the unary potentials as the output of a small neural network, produce an 8-D feature map.

Outfit features:

bag-of-words approach on the "garments" and "colours" meta-data

Setting features:

  • the output of a pre-trained scene classifier (multi-layer perceptron, whose input is CNN feature)
  • user-provided location: look up the latitude and longitude of the user-provided location, project all the values on the unit sphere, and add some small Guassian noise. Then perform unsupervised clustering using the geodesic distances, and use the geodesic distance from each cluster center as a feature.

Fashion:

  • delta time: the time between the creation of the post and when the post was crawled as a feature
  • bag-of-words on the "tag"
  • comments: parse the comments with the sentiment-analysis model, which can predict how positive a review is on a 1- 5 scale, sum the scores for each post.
  • style: style classifier pretrained on Flickr80K.

Correlations:

use a non-parametric function for each pairwise and let the CRF learn the correlations:

Similarly for the other pairwise potentials.

Learn and Inference:

First jointly train the deep networks that are used for feature extraction to predict fashionablity, and estimate the initial latent states using clustering.

Then learn the CRF model using the primal-dual method.

CVPR 2016 paper reading (6)的更多相关文章

  1. CVPR 2016 paper reading (2)

    1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...

  2. CVPR 2016 paper reading (3)

    DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Pin ...

  3. 浅析"Sublabel-Accurate Relaxation of Nonconvex Energies" CVPR 2016 Best Paper Honorable Mention

    今天作了一个paper reading,感觉论文不错,马克一下~ CVPR 2016 Best Paper Honorable Mention "Sublabel-Accurate Rela ...

  4. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  5. Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

    In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes ...

  6. Paper Reading: Stereo DSO

    开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...

  7. 深度视觉盛宴——CVPR 2016

    小编按: 计算机视觉和模式识别领域顶级会议CVPR 2016于六月末在拉斯维加斯举行.微软亚洲研究院在此次大会上共有多达15篇论文入选,这背后也少不了微软亚洲研究院的实习生的贡献.大会结束之后,小编第 ...

  8. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  9. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

随机推荐

  1. Java基础(四)方法和数组

    一.方法 1.方法的定义 方法也叫函数,就是一个能独立完成某个功能的一段代码.方法可以看作一个整体. 语法: 修饰符 返回类型 方法名字(数据类型 变量名,数据类型 变量名,……[形式参数(0个到n个 ...

  2. spring和springboot常用注解总结

    @ConfigurationProperties 可以非常方便的把资源文件中的内容绑定到对象上   @Value("${app.name}") 注入简单值 @Import 通过导入 ...

  3. 基于easyUI实现权限管理系统(四)——用户管理

    此文章是基于 EasyUI+Knockout实现经典表单的查看.编辑 一. 相关文件介绍 1. user.jsp:用户管理界面 <!DOCTYPE html PUBLIC "-//W3 ...

  4. flask 简易注册登陆

    db.py import MySQLdb conn = MySQLdb.connect(', 'test1') cur = conn.cursor() def addUser (username,pa ...

  5. JavaScript this指向相关内容

    1,默认绑定this指向windw对象 看代码: function test(C){ var a = 123 function b(){}; } 在预编译环节当中. OA{ arguments:[1] ...

  6. jquery not() 方法

    1.not(expression) 根据表达式参数的值,从包装集里删除元素 example : $('img[alt]').not('[alt*=joy]') 返回包含属性alt的img元素,但img ...

  7. java 反射实现2个int变量值的交换

    import java.io.*;import java.lang.reflect.Field; import java.lang.reflect.InvocationTargetException; ...

  8. echarts 表格与 div 之间 空白的设置

    一. options 图表选项,包含图表实例任何可配置选项: 公共选项 , 组件选项 , 数据选项 {Object} grid 二. grid 直角坐标系内绘图网格 名称 默认值 描述 {number ...

  9. 在WinServer上安装小红伞杀毒软件的经验总结

    作者:朱金灿 来源:http://blog.csdn.net/clever101 在WinServer2008或WinServer2012不能直接安装小红伞杀毒软件的免费版,需要安装服务器版.我手头并 ...

  10. CentOS 7运维管理笔记(10)----MySQL源码安装

    MySQL可以支持多种平台,如Windows,UNIX,FreeBSD或其他Linux系统.本篇随笔记录在CentOS 7 上使用源码安装MySQL的过程. 1.下载源码 选择使用北理工的镜像文件: ...