1. Neuroaesthetics in fashion: modeling the perception of fashionability, Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun, in CVPR 2015.

Goal: learn and predict how fashionable a person looks on a photograph, and suggest subtle improvements that user could make to improve her/his appeal.

This paper proposes a Conditional Random Field model that jointly reasons about several fashionability factors such as the type of outfit (全套装备) and garments (衣服) the user is wearing, the type of the user, the photograph's setting (e.g., the scenery behind the user), and the fashionability score.

Importantly, the proposed model is able to give rich feed back to the user, conveying which garments or even scenery she/he should change in order to improve fashionability.

This paper collects a novel dataset that consists of 144,169 user posts from a clothing-oriented social website chictopia.com. In a post, a user publishes one to six photographs of her/himself wearing a new outfit. Generally each photograph shows a different angle of the user or zoons in on different garments. User sometimes also add a description of the outfit, and/or tags of the types and colors of the garments they are wearing.

Discovering fashion from weak data:

The energy of the CRF as a sum of energies encoding unaries for each variable as well as non-parametric pairwise pothentials which reflect the correlations between the different random variables:

User specific features:

  • the logarithm of the number of fans
  • use rekognition to compute attributes of all the images of each post, keep the features for the image with the highest score.

Then compute the unary potentials as the output of a small neural network, produce an 8-D feature map.

Outfit features:

bag-of-words approach on the "garments" and "colours" meta-data

Setting features:

  • the output of a pre-trained scene classifier (multi-layer perceptron, whose input is CNN feature)
  • user-provided location: look up the latitude and longitude of the user-provided location, project all the values on the unit sphere, and add some small Guassian noise. Then perform unsupervised clustering using the geodesic distances, and use the geodesic distance from each cluster center as a feature.

Fashion:

  • delta time: the time between the creation of the post and when the post was crawled as a feature
  • bag-of-words on the "tag"
  • comments: parse the comments with the sentiment-analysis model, which can predict how positive a review is on a 1- 5 scale, sum the scores for each post.
  • style: style classifier pretrained on Flickr80K.

Correlations:

use a non-parametric function for each pairwise and let the CRF learn the correlations:

Similarly for the other pairwise potentials.

Learn and Inference:

First jointly train the deep networks that are used for feature extraction to predict fashionablity, and estimate the initial latent states using clustering.

Then learn the CRF model using the primal-dual method.

CVPR 2016 paper reading (6)的更多相关文章

  1. CVPR 2016 paper reading (2)

    1. Sketch me that shoe, Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M. Hospedales, Cheng Chan ...

  2. CVPR 2016 paper reading (3)

    DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations, Ziwei Liu, Pin ...

  3. 浅析"Sublabel-Accurate Relaxation of Nonconvex Energies" CVPR 2016 Best Paper Honorable Mention

    今天作了一个paper reading,感觉论文不错,马克一下~ CVPR 2016 Best Paper Honorable Mention "Sublabel-Accurate Rela ...

  4. (转)CVPR 2016 Visual Tracking Paper Review

    CVPR 2016 Visual Tracking Paper Review  本文摘自:http://blog.csdn.net/ben_ben_niao/article/details/52072 ...

  5. Paper Reading: In Defense of the Triplet Loss for Person Re-Identification

    In Defense of the Triplet Loss for Person Re-Identification  2017-07-02  14:04:20   This blog comes ...

  6. Paper Reading: Stereo DSO

    开篇第一篇就写一个paper reading吧,用markdown+vim写东西切换中英文挺麻烦的,有些就偷懒都用英文写了. Stereo DSO: Large-Scale Direct Sparse ...

  7. 深度视觉盛宴——CVPR 2016

    小编按: 计算机视觉和模式识别领域顶级会议CVPR 2016于六月末在拉斯维加斯举行.微软亚洲研究院在此次大会上共有多达15篇论文入选,这背后也少不了微软亚洲研究院的实习生的贡献.大会结束之后,小编第 ...

  8. Paper Reading - Deep Visual-Semantic Alignments for Generating Image Descriptions ( CVPR 2015 )

    Link of the Paper: https://arxiv.org/abs/1412.2306 Main Points: An Alignment Model: Convolutional Ne ...

  9. Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )

    Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...

随机推荐

  1. asp.net Core2.1连接到Mysql 数据库

    1.首先,安装相关插件 在nuget下安装 1.Pomelo.EntityFrameworkCore.MySql 2.MySql.Data.EntityFrameworkCore 都要是2.1 < ...

  2. java 的底层通信--Socket

    以前一直不太重视java 基础的整理,感觉在实际开发中好像java 基础用处不大,感觉不理解一些底层的东西对开发工作影响也不大.不过,后来我发现,很多东西都是相互联系的,如果底层的东西你不理解,后面的 ...

  3. VMware 扩展磁盘容量

    背景:创建虚拟机后,发现原先定的磁盘容量不够了,这时候可以通过vmware扩展磁盘容量 步骤一 先关闭虚拟机,右键虚拟机设置:(我没关虚拟机,所以灰显了) 步骤二: 启动VMware环境下的Linux ...

  4. mysql启动服务出错--发生系统错误 1067。

    记以此安装mysql出错的问题,MySQL 服务无法启动.系统出错  发生系统错误 1067.进程意外终止. 今天在安装本地mysql是,使用net start mysql命令启动服务时,总是报106 ...

  5. curl POST JSON

    1. 场景 Controller接收json格式数据 封装bean @RequestMapping(value = "/bb", method = RequestMethod.PO ...

  6. UX2内核浏览加速技术纲要[带你解决WebView卡顿]

    UX2内核是本人负责主要开发的浏览服务项目,其主要目的是为开发者提供一个简单好用.轻便的网络浏览服务.UX2内核的安卓端是基于WebView进行深度优化的,同时欢迎大家使用这个内核用于app页面或浏览 ...

  7. 实现移动端touch事件的横向滑动列表效果

    要实现手机端横向滑动效果并不难,了解实现的原理及业务逻辑就很容易实现.原理:touchstart(手指按下瞬间获取相对于页面的位置)——>touchmove(手指移动多少,元素相应移动多少). ...

  8. nodejs项目windows下开机自启动

    Nodejs项目开机自启动 1. 在需要自启动的项目中安装 node-windows 模块 npm install node-windows --save 2. 在项目根目录创建nw.js文件 代码截 ...

  9. React Native之React速学教程(上)

    概述 本篇为<React Native之React速学教程>的第一篇.本篇将从React的特点.如何使用React.JSX语法.组件(Component)以及组件的属性,状态等方面进行讲解 ...

  10. 使用js时,如何获取系统当前时间并且得到格式为"yyyy年MM月"的日期

    1.使用js时,如何获取系统当前时间并且得到格式为"yyyy年MM月"的日期: 1 var newdate = new Date(); 2 var nowyear = newdat ...