BZOJ3437 小P的牧场 【斜率优化dp】
3437: 小P的牧场
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 1502 Solved: 836
[Submit][Status][Discuss]
Description
小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。
Input
第一行一个整数 n 表示牧场数目
第二行包括n个整数,第i个整数表示ai
第三行包括n个整数,第i个整数表示bi
Output
只有一行,包括一个整数,表示最小花费
Sample Input
2424
3142
Sample Output
样例解释
选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。
1<=n<=1000000, 0 < a i ,bi < = 10000
与P1096仓库建设很像,不过路径权值变成了1
我们用一个比较牛的前缀和:s[i]为b[i]前缀和,c[i]为b[i]前缀和
那么从j + 1全部搬到i的代价就是(s[i] - s[j]) * i - (c[i] - c[j])【想象一下】
那么我们设f[i]表示在i建厂的最小代价
f[i] = min{f[j] + (s[i] - s[j]) * i - (c[i] - c[j])} + A[i]
去掉常量化简得到(f[j] + c[j]) = i * s[i] + f[i]
我们就的到了y = i * x + f[j]这样的直线求截距最大,维护凸包就好了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define eps 1e-9
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 1000005,maxm = 100005,INF = 1000000000;
inline LL read(){
LL out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
LL n,A[maxn],B[maxn],s[maxn],c[maxn],f[maxn],q[maxn],head,tail;
inline double slope(int u,int v){
return (double)(f[u] + c[u] - f[v] - c[v]) / (s[u] - s[v]);
}
inline LL getf(int i,int j){
return f[j] + (s[i] - s[j]) * i - (c[i] - c[j]) + A[i];
}
int main()
{
n = read();
REP(i,n) A[i] = read();
REP(i,n) B[i] = read(),s[i] = s[i - 1] + B[i],c[i] = c[i - 1] + B[i] * i;
head = tail = 0;
for (int i = 1; i <= n; i++){
while (head < tail && slope(q[head],q[head + 1]) < i + eps) head++;
f[i] = getf(i,q[head]);
while (head < tail && slope(q[tail],q[tail - 1]) + eps > slope(i,q[tail])) tail--;
q[++tail] = i;
}
cout<<f[n]<<endl;
return 0;
}
BZOJ3437 小P的牧场 【斜率优化dp】的更多相关文章
- BZOJ3437:小P的牧场(斜率优化DP)
Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制 ...
- bzoj3437小P的牧场 斜率优化dp
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1542 Solved: 849[Submit][Status][Discus ...
- 【bzoj3437】小P的牧场 斜率优化dp
题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...
- BZOJ 3437: 小P的牧场 斜率优化DP
3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...
- bzoj3427小P的牧场(斜率优化dp)
小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧 ...
- 【BZOJ3437】小P的牧场 斜率优化
[BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...
- bzoj 3437: 小P的牧场 -- 斜率优化
3437: 小P的牧场 Time Limit: 10 Sec Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...
- BZOJ3437 小P的牧场 动态规划 斜率优化
原文链接http://www.cnblogs.com/zhouzhendong/p/8696321.html 题目传送门 - BZOJ3437 题意 给定两个序列$a,b$,现在划分$a$序列. 被划 ...
- bzoj3437小P的牧场
bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目 ...
- bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)
题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...
随机推荐
- Linux命令应用大词典-第11章 Shell编程
11.1 declare:显示或设置Shell变量 11.2 export:显示或设置环境变量 11.3 set:显示和设置Shell变量 11.4 unset:删除变量或函数 11.5 env:查看 ...
- 微信小程序之注释出现的问题(.json不能注释)
js的注释一般是双斜杠// 或者是/**/这样的快注释 .json是配置文件,其内容必须符合json格式内部不允许有注释. JSON有两种数据结构: 名称/值对的集合:key : value样式: 值 ...
- 【picker】选择器组件说明
picker从底部弹起选择器组件 组件细节: 1) 该组件有五种类型,分别是普通选择器.多列选择器.时间选择器.日期选择器.省市区选择器. 2) 组件内必需包裹内容,不然无法弹出选项 <!-- ...
- python 终级篇 django ---ORM操作
一般操作 必会的 ...
- wamp下安装https 实现 ssl 协议,主要是编写小程序通讯
也不知道腾讯为啥要这个限制,是想卖他的服务器资源么 简单几句话 1 wamp3.0.X的版本不行,我折腾了一天半,放弃了,换成wamp2.5 一次通过 2 证书 去腾讯云申请,单独域名的可以申请免费的 ...
- Django基本目录详解
1.app是自己建立的一个存放app的文件夹,因为项目大了之后会存在很多app(pycharm生成app方法 Tools-Run manage.py Task-输入startapp app名称) 2. ...
- 一:yarn 介绍
yarn的了出现主要是为了拆分jobtracker的两个核心功能:资源管理和任务监控,分别对应resouceManager(RM)和applicationManager(AM).yarn中的任 ...
- HDU 3467 Song of the Siren(圆交)
Problem Description In the unimaginable popular DotA game, a hero Naga Siren, also known as Slithice ...
- 20145214 《Java程序设计》第10周学习总结
20145214 <Java程序设计>第10周学习总结 学习内容总结 计算机网络概述 在计算机网络中,现在命名IP地址的规定是IPv4协议,该协议规定每个IP地址由4个0-255之间的数字 ...
- udp->ip & tcp->ip 发送数据包的目的地址的源地址是什么时候确定的?
udp->ip & tcp->ip udp到ip层是:ip_send_skb tcp到ip层是: ip_queue_xmit 拿tcp为例,在使用[ip_queue_xmit, i ...