In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,
Ultra-QuickSort produces the output 
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0 简单的树状数组应该 应该是最基本的应用求逆序对
注意离散化
 #include <cstdio>
#include <cstring>
#include <queue>
#include <cmath>
#include <algorithm>
#include <set>
#include <iostream>
#include <map>
#include <stack>
#include <string>
#include <vector>
#define pi acos(-1.0)
#define eps 1e-6
#define fi first
#define se second
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define bug printf("******\n")
#define mem(a,b) memset(a,b,sizeof(a))
#define fuck(x) cout<<"["<<x<<"]"<<endl
#define f(a) a*a
#define sf(n) scanf("%d", &n)
#define sff(a,b) scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf printf
#define FRE(i,a,b) for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b) for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define FIN freopen("DATA.txt","r",stdin)
#define lowbit(x) x&-x
#pragma comment (linker,"/STACK:102400000,102400000") using namespace std;
typedef long long LL ;
const int maxn = 5e5 + ;
int n, a[maxn], c[maxn], b[maxn], bit[maxn];
void update(int x) {
while(x <= n) {
bit[x] += ;
x += lowbit(x);
}
}
int sum(int i) {
int ret = ;
while(i > ) {
ret += bit[i];
i -= lowbit(i);
}
return ret;
}
int main() {
while(scanf("%d", &n), n) {
for (int i = ; i <= n ; i++) {
scanf("%d", &a[i]);
b[i] = a[i];
}
sort(b + , b + + n);
for (int i = ; i <= n ; i++)
c[i] = lower_bound(b + , b + + n, a[i]) - b;
mem(bit, );
LL ans=;
for (int i= ;i<=n ;i++) {
update(c[i]);
ans+=i-sum(c[i]);
}
printf("%lld\n",ans);
}
return ;
}
												

Ultra-QuickSort POJ - 2299 树状数组求逆序对的更多相关文章

  1. poj 2299 树状数组求逆序对数+离散化

    Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 54883   Accepted: 20184 ...

  2. POJ 2299树状数组求逆序对

    求逆序对最常用的方法就是树状数组了,确实,树状数组是非常优秀的一种算法.在做POJ2299时,接触到了这个算法,理解起来还是有一定难度的,那么下面我就总结一下思路: 首先:因为题目中a[i]可以到99 ...

  3. poj 2299 树状数组求逆序数+离散化

    http://poj.org/problem?id=2299 最初做离散化的时候没太确定可是写完发现对的---由于后缀数组学的时候,,这样的思维习惯了吧 1.初始化as[i]=i:对as数组依照num ...

  4. POJ2299Ultra-QuickSort(归并排序 + 树状数组求逆序对)

    树状数组求逆序对   转载http://www.cnblogs.com/shenshuyang/archive/2012/07/14/2591859.html 转载: 树状数组,具体的说是 离散化+树 ...

  5. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  6. [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)

    [NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...

  7. 【bzoj2789】[Poi2012]Letters 树状数组求逆序对

    题目描述 给出两个长度相同且由大写英文字母组成的字符串A.B,保证A和B中每种字母出现的次数相同. 现在每次可以交换A中相邻两个字符,求最少需要交换多少次可以使得A变成B. 输入 第一行一个正整数n ...

  8. “浪潮杯”第九届山东省ACM大学生程序设计竞赛(重现赛)E.sequence(树状数组求逆序对(划掉))

    传送门 E.sequence •题意 定义序列 p 中的 "good",只要 i 之前存在 pj < pi,那么,pi就是 "good": 求删除一个数, ...

  9. 2021.12.10 P5041 [HAOI2009]求回文串(树状数组求逆序对)

    2021.12.10 P5041 [HAOI2009]求回文串(树状数组求逆序对) https://www.luogu.com.cn/problem/P5041 题意: 给一个字符串 \(S\) ,每 ...

随机推荐

  1. 三个线程ABC,交替打印ABC

    转载与:https://www.cnblogs.com/x_wukong/p/4009709.html 创建3个线程,让其交替打印ABC . 输出如下:  ABCABCABCABC. 方法:使用syn ...

  2. 1 wait notify

    wait/notify: wait()使线程停止,notify使wait状态的线程继续执行. wait()是Object类的方法,该方法用来将线程置入“预执行队列”,并在wait()方法处停止执行,直 ...

  3. C语言 指针数组 多维数组

    . 作者 : 万境绝尘 转载请注明出处 : http://blog.csdn.net/shulianghan/article/details/21402047 . 1. 地址算数运算示例 指针算数运算 ...

  4. 福大软工1816:Alpha(9/10)

    Alpha 冲刺 (9/10) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务: 文字/口头描述: 1.完善通过父子进程调用wxp ...

  5. Spring管理事务默认回滚的异常

    一.默认方式 Spring的事务管理默认只对出现运行期异常(java.lang.RuntimeException及其子类),Error进行回滚. 如果一个方法抛出Exception或者Checked异 ...

  6. Sparsity Invariant CNNs

    文章链接 Abstract 本文研究稀疏输入下的卷积神经网络,并将其应用于稀疏的激光扫描数据的深度信息完成实验.首先,我们表明,即使当丢失数据的位置提供给网络时,传统卷积网络在应用于稀疏数据时性能也很 ...

  7. TCP系列02—连接管理—1、三次握手与四次挥手

    一.TCP连接管理概述 正如我们在之前所说TCP是一个面向连接的通信协议,因此在进行数据传输前一般需要先建立连接(TFO除外),因此我们首先来介绍TCP的连接管理. 通常一次完整的TCP数据传输一般包 ...

  8. JS高级 1

    关于string,number是大写,那么就是构造函数,变量不可能为null值,除非手动设置,要解除对象的引用的时候手动去除. in关键字操作数组的时候操作的是索引值,不是里面的内容,.在操作对象的时 ...

  9. 【APS.NET Core】- Json配置文件的读取

    在项目目录下有个 appsettings.json ,我们先来操作这个文件.在appsettings.json中添加以下内容: { "Logging": { "LogLe ...

  10. Chrome 的扩展功能

    chrome浏览器修改cookie edit this cookie chrome插件是一款专为谷歌内核浏览器打造的cookie插件,安装谷歌浏览器edit this cookie插件后你就可以在浏览 ...